首页> 外文期刊>Knowledge-Based Systems >Reinforcement learning of pedagogical policies in adaptive and intelligent educational systems
【24h】

Reinforcement learning of pedagogical policies in adaptive and intelligent educational systems

机译:自适应智能教育系统中教学策略的强化学习

获取原文
获取原文并翻译 | 示例

摘要

In an adaptive and intelligent educational system (AIES), the process of learning pedagogical policies according the students needs fits as a Reinforcement Learning (RL) problem. Previous works have demonstrated that a great amount of experience is needed in order for the system to learn to teach properly, so applying RL to the AIES from scratch is unfeasible. Other works have previously demonstrated in a theoretical way that seeding the AIES with an initial value function learned with simulated students reduce the experience required to learn an accurate pedagogical policy. In this paper we present empirical results demonstrating that a value function learned with simulated students can provide the AIES with a very accurate initial pedagogical policy. The evaluation is based on the interaction of more than 70 Computer Science undergraduate students, and demonstrates that an efficient and useful guide through the contents of the educational system is obtained.
机译:在自适应智能教育系统(AIES)中,根据学生的需求学习教学策略的过程适合作为强化学习(RL)问题。先前的工作表明,要使系统学会正确的教学,需要大量的经验,因此从零开始将RL应用于AIES是不可行的。先前的其他工作已以理论方式证明,将AIES植入具有模拟学生学习能力的初始值函数,会减少学习准确的教学策略所需的经验。在本文中,我们提供了经验结果,表明通过模拟学生学习的价值函数可以为AIES提供非常准确的初始教学策略。该评估是基于70多名计算机科学本科生的互动而进行的,它表明获得了有关教育系统内容的有效且有用的指南。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号