首页> 外文期刊>Knowledge-Based Systems >Chinese text classification by the Naive Bayes Classifier and the associative classifier with multiple confidence threshold values
【24h】

Chinese text classification by the Naive Bayes Classifier and the associative classifier with multiple confidence threshold values

机译:通过朴素贝叶斯分类器和具有多个置信度阈值的关联分类器对中文文本进行分类

获取原文
获取原文并翻译 | 示例

摘要

Each type of classifier has its own advantages as well as certain shortcomings. In this paper, we take the advantages of the associative classifier and the Naive Bayes Classifier to make up the shortcomings of each other, thus improving the accuracy of text classification. We will classify the training cases with the Naive Bayes Classifier and set different confidence threshold values for different class association rules (CARs) to different classes by the obtained classification accuracy rate of the Naive Bayes Classifier to the classes. Since the accuracy rates of all selected CARs of the class are higher than that obtained by the Naive Bayes Classifier, we could further optimize the classification result through these selected CARs. Moreover, for those unclassified cases, we will classify them with the Naive Bayes Classifier. The experimental results show that combining the advantages of these two different classifiers better classification result can be obtained than with a single classifier.
机译:每种类型的分类器都有其自身的优点和某些缺点。在本文中,我们利用联想分类器和朴素贝叶斯分类器的优势来弥补彼此的不足,从而提高了文本分类的准确性。我们将使用朴素贝叶斯分类器对训练案例进行分类,并根据所获得的朴素贝叶斯分类器对各类的分类准确率,为不同类别的不同类别关联规则(CAR)设置不同的置信度阈值。由于所有选定类别的汽车的准确率均高于朴素贝叶斯分类器获得的准确率,因此我们可以通过这些选定的汽车进一步优化分类结果。此外,对于那些未分类的情况,我们将使用朴素贝叶斯分类器对其进行分类。实验结果表明,结合这两种不同分类器的优势,可以获得比单一分类器更好的分类结果。

著录项

  • 来源
    《Knowledge-Based Systems》 |2010年第6期|P.598-604|共7页
  • 作者单位

    Department of Urology, School of Medicine, National Yang-Ming University, Taiwan Department of Urology, Taipei City Hospital, Taipei, Taiwan;

    rnDepartment of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan;

    rnDepartment of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan;

    rnDepartment of Computer Science and Information Engineering, Tamkang University, Taipei, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    association classification; text classification; text mining; text categorization;

    机译:关联分类;文字分类文本挖掘;文字分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号