首页> 外文期刊>Knowledge-Based Systems >A rough set approach to feature selection based on power set tree
【24h】

A rough set approach to feature selection based on power set tree

机译:基于功率集树的粗糙集特征选择方法

获取原文
获取原文并翻译 | 示例

摘要

Feature selection is viewed as an important preprocessing step for pattern recognition, machine learning and data mining. Traditional hill-climbing search approaches to feature selection have difficulties to find optimal reducts. And the current stochastic search strategies, such as GA, ACO and PSO, provide a more robust solution but at the expense of increased computational effort. It is necessary to investigate fast and effective search algorithms. Rough set theory provides a mathematical tool to discover data dependencies and reduce the number of features contained in a dataset by purely structural methods. In this paper, we define a structure called power set tree (PS-tree), which is an order tree representing the power set, and each possible reduct is mapped to a node of the tree. Then, we present a rough set approach to feature selection based on PS-tree. Two kinds of pruning rules for PS-tree are given. And two novel feature selection algorithms based on PS-tree are also given. Experiment results demonstrate that our algorithms are effective and efficient.
机译:特征选择被视为模式识别,机器学习和数据挖掘的重要预处理步骤。传统的爬山搜索方法难以进行特征选择,很难找到最优的归约方法。当前的随机搜索策略(例如GA,ACO和PSO)提供了更强大的解决方案,但以增加的计算量为代价。有必要研究快速有效的搜索算法。粗糙集理论提供了一种数学工具,可以通过纯粹的结构方法发现数据依赖性并减少数据集中包含的特征数量。在本文中,我们定义了一种称为幂集树(PS-tree)的结构,它是代表幂集的顺序树,每个可能的归约都映射到树的节点。然后,我们提出了一种基于PS树的粗糙集特征选择方法。给出了PS树的两种修剪规则。并给出了两种基于PS树的新颖特征选择算法。实验结果表明我们的算法是有效的。

著录项

  • 来源
    《Knowledge-Based Systems》 |2011年第2期|p.275-281|共7页
  • 作者单位

    Department of Computer Science and Technology, Xiamen University of Technology, 361024 Xiamen, PR China;

    Department of Computer Science and Technology, Tongji University, 201804 Shanghai, PR China;

    Department of Computer Science and Technology, Tongji University, 201804 Shanghai, PR China;

    Department of Computer Science and Technology, Xiamen University of Technology, 361024 Xiamen, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    rough sets; feature selection; data mining; ps-tree; reduction;

    机译:粗糙集;特征选择;数据挖掘;PS树;约简;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号