机译:结合Dempster-Shafer框架中的补充信息源以解决具有不完善标签的分类问题
Faculty of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Niavaran Sq., Tehran, Iran;
Faculty of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran;
School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Niavaran Sq., Tehran, Iran,Brain and Intelligent Systems Research Lab, Department of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran;
data with imperfect labels; dempster-shafer theory; transferable belief model; feature space selection; classifier combination; MLP neural network;
机译:一种求解二次互补问题的不精确增强拉格朗日乘法方法:一种适应特定分辨率技术的算法框架
机译:学习为多标签文本分类等级:组合不同的信息来源
机译:基于证据证据理论的不确定标签针织物疵点分类
机译:基于Dempster-Shafer理论的神经网络与不完善标签数据分类
机译:角色足智多谋和在职学生:重新思考身份理论和资源视角作为补充框架。
机译:用于使用毡毡和互补成分在化学反应工程背景下解决PDE的开源计算工具箱的提议
机译:城市地区土地覆盖分类的分层Dempster-Shafer证据组合框架