首页> 外文期刊>Knowledge-Based Systems >Finding association rules in semantic web data
【24h】

Finding association rules in semantic web data

机译:在语义Web数据中查找关联规则

获取原文
获取原文并翻译 | 示例

摘要

The amount of ontologies and semantic annotations available on the Web is constantly growing. This new type of complex and heterogeneous graph-structured data raises new challenges for the data mining community. In this paper, we present a novel method for mining association rules from semantic instance data repositories expressed in RDF/(S) and OWL. We take advantage of the schema-level (i.e. Tbox) knowledge encoded in the ontology to derive appropriate transactions which will later feed traditional association rules algorithms. This process is guided by the analyst requirements, expressed in the form of query patterns. Initial experiments performed on semantic data of a biomedical application show the usefulness and efficiency of the approach.
机译:Web上可用的本体和语义注释的数量正在不断增长。这种新型的复杂且异构的图结构数据对数据挖掘社区提出了新的挑战。在本文中,我们提出了一种从RDF /(S)和OWL中表示的语义实例数据存储库中挖掘关联规则的新方法。我们利用本体中编码的模式级别(即Tbox)知识来获取适当的事务,这些事务随后将馈送到传统的关联规则算法中。此过程由分析师的要求指导,以查询模式的形式表示。对生物医学应用的语义数据进行的初步实验表明了该方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号