首页> 外文期刊>Knowledge-Based Systems >Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
【24h】

Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods

机译:不平衡数据集上公司破产预测模型的性能:抽样方法的影响

获取原文
获取原文并翻译 | 示例

摘要

Corporate bankruptcy prediction is very important for creditors and investors. Most literature improves performance of prediction models by developing and optimizing the quantitative methods. This paper investigates the effect of sampling methods on the performance of quantitative bankruptcy prediction models on real highly imbalanced dataset. Seven sampling methods and five quantitative models are tested on two real highly imbalanced datasets. A comparison of model performance tested on random paired sample set and real imbalanced sample set is also conducted. The experimental results suggest that the proper sampling method in developing prediction models is mainly dependent on the number of bankruptcies in the training sample set.
机译:公司破产的预测对债权人和投资者非常重要。大多数文献通过开发和优化定量方法来提高预测模型的性能。本文研究了抽样方法对真实高度不平衡数据集上的定量破产预测模型的性能的影响。在两个真实高度不平衡的数据集上测试了七个采样方法和五个定量模型。还对随机配对样本集和实际不平衡样本集上测试的模型性能进行了比较。实验结果表明,开发预测模型的正确采样方法主要取决于训练样本集中的破产数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号