首页> 外文期刊>Knowledge-Based Systems >A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm
【24h】

A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm

机译:一类基于凸函数编程和算法差异的光滑半监督SVM

获取原文
获取原文并翻译 | 示例

摘要

Owing to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. Applying a new smoothing strategy to a class of continuous semi-supervised support vector machines (S~3VMs), this paper proposes a class of smooth S~3VMs (S~4VMs) without adding new variables and constraints to the corresponding S~3VMs. Moreover, a general framework for solving the S~4VMs is constructed based on robust DC (difference of convex functions) programming. Furthermore, DC optimization algorithms (DCAs) for solving the S~4VMs are investigated. The resulting DCAs converge and only require solving one linear or quadratic program at each iteration. Numerical experiments on some real-world databases demonstrate that the proposed smooth S~3VMs are feasible and effective, and have comparable results as other S~3VMs.
机译:由于其广泛的适用性,半监督学习是在分类中使用未标记数据的一种有吸引力的方法。将一种新的平滑策略应用于一类连续的半监督支持向量机(S〜3VMs),提出了一种平滑的S〜3VMs(S〜4VMs),而没有为相应的S〜3VMs添加新的变量和约束。此外,基于鲁棒DC(凸函数的差)编程,构造了用于解决S〜4VM的通用框架。此外,研究了用于解决S〜4VM的DC优化算法(DCA)。产生的DCA收敛,并且每次迭代仅需要求解一个线性或二次程序。在一些实际数据库上的数值实验表明,所提出的平滑S〜3VM是可行和有效的,并且具有与其他S〜3VM相当的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号