首页> 外文期刊>Knowledge-Based Systems >A data mining approach to knowledge discovery from multidimensional cube structures
【24h】

A data mining approach to knowledge discovery from multidimensional cube structures

机译:一种从多维立方体结构发现知识的数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

In this research we present a novel methodology for the discovery of cubes of interest in large multidimensional datasets. Unlike previous research in this area, our approach does not rely on the availability of specialized domain knowledge and instead makes use of robust methods of data reduction such as Principal Component Analysis and Multiple Correspondence Analysis to identify a small subset of numeric and nominal variables that are responsible for capturing the greatest degree of variation in the data and are thus used in generating cubes of interest. Hierarchical clustering was integrated with the use of data reduction in order to gain insights into the dynamics of relationships between variables of interests at different levels of data abstraction. The two case studies that were conducted on two real word datasets revealed that the methodology was able to capture regions of interest that were significant from both the application and statistical perspectives.
机译:在这项研究中,我们提出了一种用于发现大型多维数据集中感兴趣的多维数据集的新颖方法。与该领域的先前研究不同,我们的方法不依赖于专业领域知识的可用性,而是利用强大的数据归约方法(例如主成分分析和多重对应分析)来识别数字和标称变量的一小部分。负责捕获数据中最大程度的变化,因此可用于生成感兴趣的多维数据集。分层聚类与数据约简的使用集成在一起,以便深入了解数据抽象不同级别上的兴趣变量之间的关系动态。在两个真实单词数据集上进行的两个案例研究表明,该方法能够捕获从应用程序和统计角度看都是重要的感兴趣区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号