首页> 外文期刊>Knowledge-Based Systems >Semi-supervised learning for refining image annotation based on random walk model
【24h】

Semi-supervised learning for refining image annotation based on random walk model

机译:基于随机游动模型的半监督学习细化图像标注

获取原文
获取原文并翻译 | 示例

摘要

Automatic image annotation has been an active research topic in recent years due to its potential impact on both image understanding and semantic based image retrieval. In this paper, we present a novel two-stage refining image annotation scheme based on Gaussian mixture model (GMM) and random walk method. To begin with, GMM is applied to estimate the posterior probabilities of each annotation keyword for the image, during which a semi-supervised learning, i.e. transductive support vector machine (TSVM), is employed to enhance the quality of training data. Next, a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels. In this way, it can seamlessly integrate the information from image low-level visual features and high-level semantic concepts. Followed by a random walk process over the constructed label graph is implemented to further mine the correlation of the candidate annotations so as to capture the refining results, which plays a crucial role in semantic based image retrieval. Finally, extensive experiments carried out on two publicly available image datasets bear out that this approach can achieve marked improvement in annotation performance over several state-of-the-art methods.
机译:自动图像注释由于对图像理解和基于语义的图像检索都有潜在影响,因此近年来一直是活跃的研究主题。在本文中,我们提出了一种基于高斯混合模型(GMM)和随机游走方法的新型两阶段精炼图像标注方案。首先,应用GMM来估计图像的每个注释关键字的后验概率,在此期间采用半监督学习,即转导支持向量机(TSVM),以提高训练数据的质量。接下来,通过标签相似度和与相应标签相关联的图像的视觉相似度的加权线性组合来构建标签相似度图。这样,它可以无缝集成来自图像低层视觉特征和高层语义概念的信息。在构建的标签图上执行随机游走过程,以进一步挖掘候选注释的相关性,从而捕获精炼结果,这在基于语义的图像检索中起着至关重要的作用。最后,在两个公开可用的图像数据集上进行的广泛实验表明,与几种最新方法相比,该方法可以显着提高注释性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号