首页> 外文期刊>Knowledge-Based Systems >A hybrid clustering technique combining a novel genetic algorithm with K-Means
【24h】

A hybrid clustering technique combining a novel genetic algorithm with K-Means

机译:一种将新型遗传算法与K-Means相结合的混合聚类技术

获取原文
获取原文并翻译 | 示例

摘要

Many existing clustering techniques including K-Means require a user input on the number of clusters. It is often extremely difficult for a user to accurately estimate the number of clusters in a data set. The genetic algorithms (GAs) generally determine the number of clusters automatically. However, they typically choose the genes and the number of genes randomly. If we can identify the right genes in the initial population then GAs have better possibility to produce a high quality clustering result than the case when we randomly choose the genes. We propose a novel GA based clustering technique that is capable of automatically finding the right number of clusters and identifying the right genes through a novel initial population selection approach. With the help of our novel fitness function, and gene rearrangement operation it produces high quality cluster centers. The centers are then fed into K-Means as initial seeds in order to produce an even higher quality clustering solution by allowing the initial seeds to readjust as needed. Our experimental results indicate a statistically significant superiority (according to the sign test analysis) of our technique over five recent techniques on twenty natural data sets used in this study based on six evaluation criteria.
机译:许多现有的群集技术(包括K-Means)都需要用户输入群集数量。对于用户而言,准确地估计数据集中的簇数通常非常困难。遗传算法(GA)通常会自动确定簇数。但是,他们通常随机选择基因和基因数量。如果我们能够在初始种群中识别出正确的基因,那么与我们随机选择基因的情况相比,遗传算法更有可能产生高质量的聚类结果。我们提出了一种新颖的基于遗传算法的聚类技术,该技术能够通过一种新颖的初始种群选择方法自动找到正确数量的聚类并鉴定正确的基因。借助我们新颖的适应功能和基因重排操作,它可以产生高质量的簇中心。然后将这些中心作为初始种子送入K-Means,以便通过允许根据需要重新调整初始种子来产生更高质量的聚类解决方案。我们的实验结果表明,根据六项评估标准,在这项研究中使用的二十种自然数据集上,我们的技术在统计学上优于五种最新技术(根据符号测试分析)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号