首页> 外文期刊>Knowledge-Based Systems >QA document recommendations for communities of question-answering websites
【24h】

QA document recommendations for communities of question-answering websites

机译:针对问答网站社区的质量检查文档建议

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of Internet and Web 2.0 technology, Question & Answering (Q&A) websites have become an essential knowledge-sharing platform. This platform provides knowledge community services where users with common interests or expertise can form a knowledge community. Community members can collect and share QA knowledge (documents) regarding their interests. However, due to the massive amount of QAs created every day, information overload can become a major problem. Consequently, a recommendation mechanism is needed to recommend QA documents for communities of Q&A websites. Existing studies did not investigate the recommendation mechanisms for knowledge collections in communities of Q&A Websites. Traditional recommendation methods use member importance as weight to consolidate individual profiles and generate group profiles, which in turn are used to filter out items of recommendation. However, they do not consider certain factors of the recommended items, such as the reputation of the community members and the complementary relationships between documents. In this work, we propose a novel method to recommend related QA documents for knowledge communities of Q&A websites. The proposed method recommends QA documents by considering factors such as the community members' reputation in collecting and answering QAs, the push scores and collection time of QAs, the complementary relationships between QAs and their relevance to the communities. This research evaluates and compares the proposed methods using an experimental dataset collected from Yahoo! Answers Taiwan website. Experimental results show that the proposed method outperforms other conventional methods, providing a more effective manner to recommend Q&A documents to knowledge communities.
机译:随着Internet和Web 2.0技术的飞速发展,问答网站已成为必不可少的知识共享平台。该平台提供知识社区服务,具有共同兴趣或专业知识的用户可以组成知识社区。社区成员可以收集和分享有关其兴趣的质量检查知识(文档)。但是,由于每天都会产生大量的QA,因此信息过载可能成为一个主要问题。因此,需要一种推荐机制来为问答网站社区推荐质量检查文档。现有研究没有调查问答网站社区中知识收集的推荐机制。传统的推荐方法使用成员重要性作为权重来合并各个个人资料并生成组个人资料,而后者又被用来过滤出推荐项目。但是,他们没有考虑推荐项目的某些因素,例如社区成员的声誉和文档之间的互补关系。在这项工作中,我们提出了一种新颖的方法来为问答网站的知识社区推荐相关的质量检查文档。提出的方法通过考虑诸如社区成员在收集和回答QA中的声誉,QA的推送分数和收集时间,QA之间的互补关系及其与社区的相关性等因素来推荐QA文档。这项研究使用从Yahoo!收集的实验数据集评估并比较了所提出的方法。回答台湾网站。实验结果表明,该方法优于其他常规方法,为向知识社区推荐问答文档提供了更有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号