首页> 外文期刊>Knowledge-Based Systems >Graph-based semantic annotation for enriching educational content with linked data
【24h】

Graph-based semantic annotation for enriching educational content with linked data

机译:基于图的语义注释,可通过链接数据丰富教育内容

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new approach to semantic annotation with linked data in the field of document enrichment is presented. This application has been developed in the domain of Education and contrary to traditional semantic annotation, which relates each relevant term of the document with an instance of the ontology, in our approach relevant terms are connected to a (sub)graph of the ontology. Specifically, each relevant term is related to an instance which is expanded to a predefined depth limit, so the term is finally annotated with a (sub)graph. During the expansion process, instances unrelated with the document topics are ruled out, so only relevant and contextualized information is finally included. As result of this process, the document is annotated with a set of interconnected (sub)graphs, and students may access and navigate through these contents to deepen the topics described in the document. This approach has several benefits. From the document enrichment perspective, a set of (sub)graphs, provides a better description, moreover considering the semantic nature of linked data. From the computational perspective, this approach is also more suitable, particularly in the domain of Education. Filtering linked data is computationally expensive, and thus this process cannot be performed in real time. Our approach has been validated in the e-Leaming domain and compared with similar approaches that also annotate with linked data.
机译:本文提出了一种在文档丰富化领域中用链接数据进行语义标注的新方法。该应用程序是在教育领域开发的,与传统的语义注释相反,传统的语义注释将文档的每个相关术语与本体的一个实例相关联,在我们的方法中,相关术语与本体的(子)图相关。具体而言,每个相关术语都与一个实例进行了扩展,该实例被扩展到预定义的深度限制,因此该术语最终用(子)图进行注释。在扩展过程中,排除了与文档主题无关的实例,因此最终仅包括相关的上下文信息。作为此过程的结果,文档将用一组互连的(子)图进行注释,并且学生可以访问和浏览这些内容以加深文档中描述的主题。这种方法有几个好处。从文档丰富的角度来看,一组(子)图提供了更好的描述,而且考虑了链接数据的语义性质。从计算的角度来看,这种方法也更适合,尤其是在教育领域。过滤链接的数据在计算上非常昂贵,因此无法实时执行此过程。我们的方法已经在电子学习领域得到验证,并与类似的方法进行了比较,后者也使用链接数据进行注释。

著录项

  • 来源
    《Knowledge-Based Systems》 |2014年第1期|29-42|共14页
  • 作者单位

    Centro de Investigation en Tecnoloxias da Information (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;

    Centro de Investigation en Tecnoloxias da Information (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;

    Centro de Investigation en Tecnoloxias da Information (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;

    Centro de Investigation en Tecnoloxias da Information (CITIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semantic annotation; Linked data; Semantic web; Ontologies; Technology enhanced learning;

    机译:语义注释;链接数据;语义网;本体;技术增强学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号