首页> 外文期刊>Knowledge-Based Systems >PLS-based recursive feature elimination for high-dimensional small sample
【24h】

PLS-based recursive feature elimination for high-dimensional small sample

机译:基于PLS的高维小样本递归特征消除

获取原文
获取原文并翻译 | 示例

摘要

This paper focused on feature selection for high-dimensional small samples (HDSS). We first presented a general analytical framework for feature selection on a HDSS including selection strategy (single-feature ranking and multi-feature ranking) and evaluation criteria (feature subset consistency and compactness). Then we proposed partial least squares (PLS) based feature selection methods for HDSS and two theorems. The proposed methodologies include a PLS model for classification, parameter selection, PLSRan-king, and PLS-based recursive feature elimination. Furthermore, we compared our proposed methods with several existing feature selection methods such as Support Vector Machine (SVM) based feature selection, SVM-based recursive feature elimination (SVMRFE), Random Forest (RF) based feature selection, RF-based recursive feature elimination (RFRFE), ReliefF algorithm and ReliefF-based recursive feature elimination (ReliefFRFE). Using twelve high-dimensional datasets from different areas of research, we evaluated the results in terms of accuracy (sensitivity and specificity), running time, and the feature subset consistency and compactness. The analysis demonstrated that the proposed approach from our research performed very well when handling both two-category and multi-category problems.
机译:本文着重于高维小样本(HDSS)的特征选择。我们首先介绍了用于HDSS的特征选择的通用分析框架,包括选择策略(单特征排名和多特征排名)和评估标准(特征子集一致性和紧凑性)。然后针对HDSS和两个定理提出了基于偏最小二乘(PLS)的特征选择方法。所提出的方法包括用于分类,参数选择,PLSRan-king和基于PLS的递归特征消除的PLS模型。此外,我们将我们提出的方法与几种现有的特征选择方法进行了比较,例如基于支持向量机(SVM)的特征选择,基于SVM的递归特征消除(SVMRFE),基于随机森林(RF)的特征选择,基于RF的递归特征消除(RFRFE),ReliefF算法和基于ReliefF的递归特征消除(ReliefFRFE)。使用来自不同研究领域的十二个高维数据集,我们根据准确性(敏感性和特异性),运行时间以及特征子集的一致性和紧凑性评估了结果。分析表明,我们的研究提出的方法在处理两类和多类问题时都表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号