首页> 外文期刊>Knowledge-Based Systems >Online learning the consensus of multiple correspondences between sets
【24h】

Online learning the consensus of multiple correspondences between sets

机译:在线学习集合之间多个对应关系的共识

获取原文
获取原文并翻译 | 示例

摘要

When several subjects solve the assignment problem of two sets, differences on the correspondences computed by these subjects may occur. These differences appear due to several factors. For example, one of the subjects may give more importance to some of the elements' attributes than another subject. Another factor could be that the assignment problem is computed through a suboptimal algorithm and different non-optimal correspondences can appear. In this paper, we present a consensus methodology to deduct the consensus of several correspondences between two sets. Moreover, we also present an online learning algorithm to deduct some weights that gauge the impact of each initial correspondence on the consensus. In the experimental section, we show the evolution of these parameters together with the evolution of the consensus accuracy. We observe that there is a clear dependence of the learned weights with respect to the quality of the initial correspondences. Moreover, we also observe that in the first iterations of the learning algorithm, the consensus accuracy drastically increases and then stabilises. (C) 2015 Elsevier B.V. All rights reserved.
机译:当几个主题解决两组的分配问题时,这些主题计算出的对应关系可能会发生差异。这些差异的出现是由于多种因素。例如,一个主题可能比其他主题更重视某些元素的属性。另一个因素可能是分配问题是通过次优算法计算的,并且会出现不同的非最优对应关系。在本文中,我们提出了一种共识方法来推论两组之间若干对应关系的共识。此外,我们还提出了一种在线学习算法,以扣除一些权重来衡量每个初始对应对共识的影响。在实验部分,我们展示了这些参数的演变以及共识精度的演变。我们观察到,学习权重相对于初始对应关系的质量有明显的依赖性。此外,我们还观察到在学习算法的第一个迭代中,共识精度急剧增加,然后趋于稳定。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号