首页> 外文期刊>Knowledge-Based Systems >Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules
【24h】

Rare-PEARs: A new multi objective evolutionary algorithm to mine rare and non-redundant quantitative association rules

机译:稀有梨:一种新的多目标进化算法,用于挖掘稀有和非冗余的定量关联规则

获取原文
获取原文并翻译 | 示例

摘要

Since finding quantitative association rules (QARs) is an NP-hard problem, evolutionary methods are suitable solutions for discovery QARs. Nevertheless, most of the previous evolutionary methods to discover association rules only consider frequent dependency among items in datasets. They do not pay specific attention to interestingness and non-redundancy as two critical objectives. In this paper, the proposed algorithm (Rare-PEARs) gives a chance to each rule with different length and appearance (antecedent and consequent parts of rules) to be created. Therefore, various interesting, rare or interesting and rare rules can be found. Some of these rules might be uninteresting (those that contain frequent item sets). However, we try to avoid them by Rare-PEARs. To accomplish this goal, our method decomposes the process of association rule mining into N - 1 sub-problems (N is the number of attributes, and each sub-problem is handled by an independent sub-process during Rare-PEARs execution). Each sub-process starts individually with a different initial population. It then explores the search space of its corresponding sub-problem to find rules with semi-optimal intervals for each of the attributes. This process is done by a new definition of Non-Dominated concept. Rare-PEARs uses this definition to find semi-optimal intervals for attributes during the execution of each sub-process. Finally, Rare-PEARs collects QARs from sub-processes and determines the ultimate Non-Dominated rules based on the interestingness and reliability measures. Rare-PEARs tries to maximize three objectives: interestingness, accuracy and reliability while providing vast coverage on the input dataset. We compared Rare-PEARs with ten algorithms (multi-objective, mono-objective and classical algorithms of association rule mining) over several real-world datasets. The results demonstrate high efficiency of Rare-PEARs. (C) 2015 Elsevier B.V. All rights reserved.
机译:由于找到定量关联规则(QAR)是一个NP难题,因此进化方法是发现QAR的合适解决方案。但是,大多数发现关联规则的进化方法仅考虑数据集中项目之间的频繁依赖性。他们没有特别关注有趣性和非冗余这两个关键目标。在本文中,所提出的算法(Rare-PEARs)为每条具有不同长度和外观(规则的前段和后段)的规则提供了机会。因此,可以找到各种有趣,稀有或有趣和稀有规则。其中一些规则可能没有意思(那些包含频繁项集的规则)。但是,我们尝试通过稀有梨子来避免它们。为了实现此目标,我们的方法将关联规则挖掘的过程分解为N-1个子问题(N是属性的数量,每个子问题在Rare-PEARs执行期间由独立的子过程处理)。每个子流程均以不同的初始填充量开始。然后,它探索其相应子问题的搜索空间,以找到每个属性具有半最佳间隔的规则。此过程是通过对非主导概念的新定义来完成的。 Rare-PEARs使用此定义为每个子流程执行期间的属性找到半最佳间隔。最后,Rare-PEARs从子流程中收集QAR,并根据兴趣度和可靠性测度确定最终的非支配规则。稀有梨试图最大化三个目标:兴趣,准确性和可靠性,同时在输入数据集上提供广泛的覆盖范围。我们将Rare-PEAR与十个算法(关联规则挖掘的多目标,单目标和经典算法)在多个真实数据集上进行了比较。结果证明了稀有梨的高效率。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号