首页> 外文期刊>Knowledge-Based Systems >Pose-invariant face recognition using facial landmarks and Weber local descriptor
【24h】

Pose-invariant face recognition using facial landmarks and Weber local descriptor

机译:使用面部标志和Weber局部描述符进行姿势不变的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Face recognition across pose is a popular issue in biometrics. Facial rotations caused by pose dramatically enlarge the intra-class variations, which considerably obstructs the performance of the face recognition algorithms. It is advisable to extract more discriminative features to overcome this difficulty. In this paper, we present a simple but efficient feature extraction method based on facial landmarks and multi-scale fusion features. We first extract local features by using Weber local descriptors (WLD) and multi-scale patches centered at predefined facial landmarks, and then construct fusion features by randomly selecting parts of local features. Finally, the classification result is obtained by decision fusion of all local features and fusion features. The proposed method has the following two characteristics: (1) local features around landmarks can well describe the similarity between two images under pose variations and simultaneously reduce redundant information and (2) fusion features constructed by randomly selecting local features from predefined regions further alleviate the influence of pose variations. Extensive experimental results on public face datasets have shown that the proposed method greatly outperforms the previous state-of-the-art algorithms. (C) 2015 Elsevier B.V. All rights reserved.
机译:跨姿势的面部识别是生物识别技术中的一个流行问题。由姿势引起的面部旋转极大地扩大了类内差异,这极大地阻碍了面部识别算法的性能。建议提取更多区分特征以克服此困难。在本文中,我们提出了一种基于面部标志和多尺度融合特征的简单但有效的特征提取方法。我们首先通过使用Weber局部描述符(WLD)和以预定义面部标志为中心的多尺度补丁来提取局部特征,然后通过随机选择局部局部特征来构造融合特征。最后,通过对所有局部特征和融合特征进行决策融合获得分类结果。所提出的方法具有以下两个特征:(1)地标周围的局部特征可以很好地描述姿态变化下的两个图像之间的相似度,同时减少冗余信息;(2)通过从预定义区域中随机选择局部特征构造的融合特征进一步缓解了这种情况。姿势变化的影响。在公众面部数据集上的大量实验结果表明,该方法大大优于以前的最新算法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号