首页> 外文期刊>Knowledge-Based Systems >Software requirement optimization using a multiobjective swarm intelligence evolutionary algorithm
【24h】

Software requirement optimization using a multiobjective swarm intelligence evolutionary algorithm

机译:使用多目标群体智能进化算法的软件需求优化

获取原文
获取原文并翻译 | 示例

摘要

The selection of the new requirements which should be included in the development of the release of a software product is an important issue for software companies. This problem is known in the literature as the Next Release Problem (NRP). It is an NP-hard problem which simultaneously addresses two apparently contradictory objectives: the total cost of including the selected requirements in the next release of the software package, and the overall satisfaction of a set of customers who have different opinions about the priorities which should be given to the requirements, and also have different levels of importance within the company. Moreover, in the case of managing real instances of the problem, the proposed solutions have to satisfy certain interaction constraints which arise among some requirements. In this paper, the NRP is formulated as a multiobjective optimization problem with two objectives (cost and satisfaction) and three constraints (types of interactions). A multiobjective swarm intelligence metaheuristic is proposed to solve two real instances generated from data provided by experts. Analysis of the results showed that the proposed algorithm can efficiently generate high quality solutions. These were evaluated by comparing them with different proposals (in terms of multiobjective metrics). The results generated by the present approach surpass those generated in other relevant work in the literature (e.g. our technique can obtain a HV of over 60% for the most complex dataset managed, while the other approaches published cannot obtain an HV of more than 40% for the same dataset). (C) 2015 Elsevier B.V. All rights reserved.
机译:对于软件公司来说,选择应包含在软件产品发行版开发中的新要求是一个重要的问题。该问题在文献中称为“下一发行版问题”(NRP)。这是一个NP难题,同时解决了两个明显矛盾的目标:将所选需求包含在下一软件包版本中的总成本;以及对优先级有不同意见的一组客户的总体满意度满足要求,并且在公司内部具有不同的重要性级别。此外,在管理问题的实际情况下,提出的解决方案必须满足某些要求之间出现的某些交互约束。在本文中,NRP被表述为具有两个目标(成本和满意度)和三个约束(交互类型)的多目标优化问题。提出了一种多目标群智能元启发式算法,以解决专家提供的数据生成的两个真实实例。结果分析表明,该算法可以有效地生成高质量的解。通过将它们与不同的建议进行比较(在多目标指标方面),对这些指标进行了评估。本方法产生的结果超过文献中其他相关工作产生的结果(例如,对于管理的最复杂的数据集,我们的技术可获得的HV超过60%,而其他发表的方法无法获得的HV超过40%对于相同的数据集)。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号