首页> 外文期刊>Knowledge-Based Systems >Implicit feature identification in Chinese reviews using explicit topic mining model
【24h】

Implicit feature identification in Chinese reviews using explicit topic mining model

机译:使用显式主题挖掘模型的中文评论中的隐式特征识别

获取原文
获取原文并翻译 | 示例

摘要

The essential work of feature-specific opinion mining is centered on the product features. Previous related research work has often taken into account explicit features but ignored implicit features, However, implicit feature identification, which can help us better understand the reviews, is an essential aspect of feature-specific opinion mining. This paper is mainly centered on implicit feature identification in Chinese product reviews. We think that based on the explicit synonymous feature group and the sentences which contain explicit features, several Support Vector Machine (SVM) classifiers can be established to classify the non-explicit sentences. Nevertheless, instead of simply using traditional feature selection methods, we believe an explicit topic model in which each topic is pre-defined could perform better. In this paper, we first extend a popular topic modeling method, called Latent Dirichlet Allocation (LDA), to construct an explicit topic model. Then some types of prior knowledge, such as: must-links, cannot-links and relevance-based prior knowledge, are extracted and incorporated into the explicit topic model automatically. Experiments show that the explicit topic model, which incorporates pre-existing knowledge, outperforms traditional feature selection methods and other existing methods by a large margin and the identification task can be completed better.
机译:特定于功能的观点挖掘的基本工作集中在产品功能上。先前的相关研究工作经常考虑到显式特征,却忽略了隐式特征。但是,隐式特征识别可以帮助我们更好地理解评论,是特定于特征的观点挖掘的重要方面。本文主要针对中文产品评论中的隐式特征识别。我们认为,基于显式同义特征组和包含显式特征的句子,可以建立几个支持向量机(SVM)分类器对非显式句子进行分类。尽管如此,我们相信,不是简单地使用传统的特征选择方法,而是预定义每个主题的显式主题模型可能会更好。在本文中,我们首先扩展了一种流行的主题建模方法,称为潜在狄利克雷分配(LDA),以构造一个明确的主题模型。然后,提取某些类型的先验知识,例如:必须链接,不能链接和基于相关性的先验知识,并自动将其合并到显式主题模型中。实验表明,结合了已有知识的显式主题模型在很大程度上优于传统的特征选择方法和其他现有方法,可以更好地完成识别任务。

著录项

  • 来源
    《Knowledge-Based Systems》 |2015年第3期|166-175|共10页
  • 作者

    Hua Xu; Fan Zhang; Wei Wang;

  • 作者单位

    State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Opinion mining; Implicit feature; Topic model; Support vector machine; Product review;

    机译:意见挖掘;隐式功能;主题模型;支持向量机;产品审核;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号