首页> 外文期刊>Knowledge-Based Systems >Support vector-based algorithms with weighted dynamic time warping kernel function for time series classification
【24h】

Support vector-based algorithms with weighted dynamic time warping kernel function for time series classification

机译:支持基于矢量的算法,具有加权动态时间规整核函数,可用于时间序列分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose support vector-based supervised learning algorithms, called multiclass support vector data description with weighted dynamic time warping kernel function (MSVDD-WDTWK) and multiclass support vector machines with weighted dynamic time warping kernel function (MSVM-WDTWK), which provides a flexible and robust kernel function for time series classification between non-aligned time series data resulting in improved accuracy. The proposed WDTW kernel function provides an optimal match between two time series data by not only allowing a non-linear mapping between two data sequences, but also considering relative significance depending on the phase difference between points on time series data. We validate the proposed approaches using extensive numerical experiments on a number of multiclass UCR time series data mining archive, and demonstrate that our proposed methods provide lower classification error rates compared with existing techniques.
机译:在本文中,我们提出了基于支持向量的监督学习算法,称为具有加权动态时间规整内核函数的多类支持向量数据描述(MSVDD-WDTWK)和具有加权动态时间规整内核函数的多类支持向量机(MSVM-WDTWK),它为不对齐的时间序列数据之间的时间序列分类提供了灵活而强大的内核功能,从而提高了准确性。所提出的WDTW内核函数不仅通过允许两个数据序列之间进行非线性映射,而且还根据时间序列数据上各点之间的相位差来考虑相对重要性,从而提供了两个时间序列数据之间的最佳匹配。我们使用大量的多类UCR时间序列数据挖掘档案库进行了广泛的数值实验,验证了所提出的方法,并证明了与现有技术相比,我们提出的方法提供了更低的分类错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号