首页> 外文期刊>Knowledge-Based Systems >One-Class Support Tensor Machine
【24h】

One-Class Support Tensor Machine

机译:一类支撑张量机

获取原文
获取原文并翻译 | 示例

摘要

In fault diagnosis, face recognition, network anomaly detection, text classification and many other fields, we often encounter one-class classification problems. The traditional vector-based one-class classification algorithms represented by One-Class Support Vector Machine (OCSVM) have limitations when tensor is considered as input data. This work addresses one-class classification problem with tensor-based maximal margin classification paradigm. To this end, we formulate the One-Class Support Tensor Machine (OCSTM), which separates most samples of interested class from the origin in the tensor space, with maximal margin. The benefits of the proposed algorithm are twofold. First, the use of direct tensor representation helps to retain the data topology more efficiently. The second benefit is that tensor representation can greatly reduce the number of parameters. It helps overcome the overfitting problem caused mostly by vector-based algorithms and especially suits for high dimensional and small sample size problem. To solve the corresponding optimization problem in OCSTM, the alternating projection method is implemented, for it is simplified by solving a typical OCSVM optimization problem at each iteration. The efficiency of the proposed method is illustrated on both vector and tensor datasets. The experimental results indicate the validity of the new method. (C) 2016 Elsevier B.V. All rights reserved.
机译:在故障诊断,人脸识别,网络异常检测,文本分类等许多领域,我们经常遇到一类分类问题。当将张量视为输入数据时,由一类支持向量机(OCSVM)表示的传统的基于矢量的一类分类算法具有局限性。这项工作解决了基于张量的最大余量分类范例的一类分类问题。为此,我们制定了一类支持张量机(OCSTM),它以最大余量将大多数感兴趣类的样本与张量空间中的原点分开。提出的算法的好处是双重的。首先,直接张量表示的使用有助于更有效地保留数据拓扑。第二个好处是张量表示可以大大减少参数的数量。它有助于克服主要由基于矢量的算法引起的过拟合问题,尤其适用于高维和小样本量的问题。为了解决OCSTM中的相应优化问题,实施了交替投影方法,因为它通过在每次迭代时解决典型的OCSVM优化问题而得以简化。在矢量和张量数据集上都说明了该方法的有效性。实验结果表明了该方法的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号