首页> 外文期刊>Knowledge-Based Systems >Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD)
【24h】

Traffic big data prediction and visualization using Fast Incremental Model Trees-Drift Detection (FIMT-DD)

机译:使用快速增量模型树漂移检测(FIMT-DD)进行大数据预测和可视化交易

获取原文
获取原文并翻译 | 示例

摘要

Information extraction using distributed sensors has been widely used to obtain information knowledge from various regions or areas. Vehicle traffic data extraction is one of the ways to gather information in order to get the traffic condition information. This research intends to predict and visualize the traffic conditions in a particular road region. Traffic data was obtained from Department of Transport UK. These data are collected using hundreds of sensors for 24 h. Thus, the size of data is very huge. In order to get the behavior of the traffic condition, we need to analyze the huge dataset which was obtained from the sensors. The uses of conventional data mining methods are not sufficient to use, due to the process of knowledge building that should store data temporary in the memory. The fact that data is continuously becoming larger over time, therefore we need to find a method that could automatically adapt to process data in the form of streams. We use method called FIMT-DD (Fast Incremental Model Trees-Drift Detection) to analyze and predict the very large traffic dataset. Based on the prediction system that we have developed, we also visualize the prediction of traffic flow condition within generated sensor point in the real map simulation. (c) 2015 Elsevier B.V. All rights reserved.
机译:使用分布式传感器的信息提取已被广泛用于从各个区域或地区获取信息知识。车辆交通数据提取是收集信息以获得交通状况信息的方法之一。这项研究旨在预测和可视化特定道路区域的交通状况。交通数据是从英国运输部获得的。使用数百个传感器收集这些数据24小时。因此,数据量非常大。为了获得交通状况的行为,我们需要分析从传感器获得的巨大数据集。传统的数据挖掘方法的使用还不够用,因为知识的构建过程应该将数据临时存储在内存中。随着时间的流逝,数据不断地变大,因此,我们需要找到一种可以自动适应流形式的数据的方法。我们使用称为FIMT-DD(快速增量模型树漂移检测)的方法来分析和预测非常大的交通数据集。基于我们开发的预测系统,我们还可以在真实地图仿真中可视化生成的传感器点内交通状况的预测。 (c)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号