首页> 外文期刊>Knowledge-Based Systems >A keypoints-based feature extraction method for iris recognition under variable image quality conditions
【24h】

A keypoints-based feature extraction method for iris recognition under variable image quality conditions

机译:基于关键点的可变图像质量条件下虹膜识别的特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

Iris recognition is a very reliable biometric modality for human identification. The immutable and unique characteristics of the iris are the foundations for that claim. Currently, research interest in this field points to challenges regarding less-constrained iris recognition systems. In response, we propose a robust keypoints-based feature extraction method for iris recognition under variable image quality conditions. To this end, three detectors have been used to identify distinctive keypoints: Harris-Laplace, Hessian-Laplace, and Fast Hessian. Once the three sources of keypoints are obtained, they are described in terms of SIFT features. The proposed method combines the three information sources of SIFT features at matching score level. The combination of these sources reinforces the discriminative power of the proposal for recognition on highly or less textured iris images. The fusion is carried out using a proposed weighted sum rule relies on the ranking of three performance measures. The proposed fusion rule computes weights, which represent the reliability degree to which each individual source must contribute in order to determine the more discriminative matching scores. Our experiments rely on iris standard databases which as a whole constitute a challenging and perfect example of variable image quality conditions. According to the results, our proposal is very competitive and outperforms the state-of-the-art algorithms on the topic. In addition, it is demonstrated that the proposed keypoints-based feature extraction method is feasible and that it could be used even in real-time applications if the database is previously processed. (C) 2015 Elsevier B.V. All rights reserved.
机译:虹膜识别是一种非常可靠的生物识别方式,可用于人类识别。虹膜的不变性和独特性是该主张的基础。当前,对该领域的研究兴趣指出了关于约束较少的虹膜识别系统的挑战。作为响应,我们提出了一种基于健壮的基于关键点的特征提取方法,用于可变图像质量条件下的虹膜识别。为此,已使用三个检测器来识别独特的关键点:Harris-Laplace,Hessian-Laplace和Fast Hessian。一旦获得了三个关键点的来源,就将根据SIFT功能进行描述。所提出的方法在匹配得分水平上结合了SIFT特征的三个信息源。这些来源的结合增强了对具有较高或较低质感的虹膜图像进行识别的建议的区分能力。使用建议的加权和规则进行融合,该规则取决于三个性能指标的等级。提出的融合规则计算权重,该权重代表每个单独来源必须贡献的可靠性程度,以确定更具有区别性的匹配分数。我们的实验依赖于虹膜标准数据库,这些数据库总体上构成了可变图像质量条件的具有挑战性和完美的示例。根据结果​​,我们的建议极具竞争力,并且优于该主题的最新算法。另外,证明了所提出的基于关键点的特征提取方法是可行的,并且如果事先处理了数据库,则即使在实时应用中也可以使用该方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号