首页> 外文期刊>Knowledge-Based Systems >A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality
【24h】

A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality

机译:基于粒子群和图像合成基数的图像自动模糊聚类新方法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy clustering plays an important role in pattern recognition and knowledge discovery. Recently, there has been a great interest of developing fuzzy clustering algorithms on advanced fuzzy sets such as Picture Fuzzy Clustering (FC-PFS) which is an extension of Fuzzy C-Means on Picture Fuzzy Set. A major disadvantage of FC-PFS is how to define a prior number of clusters before clustering. Because each dataset has distinctive features and distributions of patterns, determining such the number for a clustering algorithm would result in good quality. In this paper, we propose a method called Automatic Picture Fuzzy Clustering (AFC-PFS) for determining the most suitable number of clusters for FC-PFS. It is a hybrid method between Particle Swarm Optimization (PSO) and FC-PFS where combined solutions consisting of the number of clusters and equivalent clustering centers and membership matrices are packed and optimized in PSO. A new term namely Picture Composite Cardinality is also given to determine a suitable number of clusters. AFC-PFS is empirically validated on benchmark datasets of UCI Machine Learning Repository by different clustering quality indices. The results show that AFC-PFS has better performance than the relevant methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:模糊聚类在模式识别和知识发现中起着重要作用。近来,人们对在诸如图片模糊聚类(FC-PFS)之类的高级模糊集上开发模糊聚类算法有极大的兴趣,它是图片模糊集上的模糊C-均值的扩展。 FC-PFS的主要缺点是如何在群集之前定义群集的先前数量。因为每个数据集都具有独特的特征和模式分布,所以为聚类算法确定这种数量将产生良好的质量。在本文中,我们提出了一种称为自动图片模糊聚类(AFC-PFS)的方法,用于确定最适合FC-PFS的聚类数。它是粒子群优化(PSO)和FC-PFS之间的一种混合方法,在该方法中,将由多个簇和等效聚类中心以及隶属矩阵组成的组合解决方案打包并优化到PSO中。还给出了一个新术语,即图像合成基数,以确定适当数量的群集。通过UCI机器学习存储库的基准数据集,通过不同的聚类质量指标对AFC-PFS进行了经验验证。结果表明,AFC-PFS比相关方法具有更好的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号