首页> 外文期刊>Knowledge-Based Systems >DECO3R: A Differential Evolution-based algorithm for generating compact Fuzzy Rule-based Classification Systems
【24h】

DECO3R: A Differential Evolution-based algorithm for generating compact Fuzzy Rule-based Classification Systems

机译:DECO3R:一种基于差异进化的算法,用于生成紧凑的基于模糊规则的分类系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper a novel Genetic Fuzzy Rule-based Classification System, named DECO3R (Differential Evolution based Cooperative and Competing learning of Compact FRBCS), is proposed. DECO3R follows the genetic cooperative - competitive learning (GCCL) approach and uses Differential Evolution as its learning algorithm. In this frame, every chromosome encodes a single fuzzy rule. The proposed AdaBoost-based Fuzzy Token Competition (FTC) method is employed to deal with the cooperation - competition problem, an integral part to all GCCL algorithms. DECO3R learns clear, precise and predictive rules where the fuzzy sets in the premise part are consecutive. The experimental component analysis demonstrates that DE as a learning algorithm outperforms a simple Genetic Algorithm. Additionally, the novel FTC method exceeds the performance of other similar techniques. The experimental comparative analysis highlights the robust performance of DECO3R compared to other rule learning algorithms, both in terms of accuracy and of structural complexity. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的基于遗传模糊规则的分类系统,称为DECO3R(基于紧凑型FRBCS的基于差分进化的协作和竞争学习)。 DECO3R遵循遗传合作竞争学习(GCCL)方法,并使用差异进化作为其学习算法。在此框架中,每个染色体都编码一个模糊规则。提出的基于AdaBoost的模糊令牌竞争(FTC)方法用于处理合作竞争问题,这是所有GCCL算法不可或缺的一部分。 DECO3R学习清晰,精确和可预测的规则,其中前提部分中的模糊集是连续的。实验成分分析表明,作为学习算法的DE优于简单的遗传算法。此外,新颖的FTC方法超越了其他类似技术的性能。实验比较分析突出了DECO3R与其他规则学习算法相比在准确性和结构复杂性方面的强大性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号