首页> 外文期刊>Knowledge-Based Systems >A weight-incorporated similarity-based clustering ensemble method based on swarm intelligence
【24h】

A weight-incorporated similarity-based clustering ensemble method based on swarm intelligence

机译:基于群体智能的权重结合相似度聚类集成方法

获取原文
获取原文并翻译 | 示例

摘要

Clustering methods play an important role in data mining and various other applications. This work investigates them based on swarm intelligence. It proposes a new clustering method by combining K-means clustering method and mussels wandering optimization algorithm. A single cluster method is well recognized to achieve limited performance when it is compared with a clustering ensemble (CE) that integrates several single ones. Hence, this work introduces a new CE method called weight-incorporated similarity based CE. The commonly-used datasets with varying size are used to test the performance of the proposed methods. The simulation results illustrate the validity and performance advantages of the proposed ones over some of their peers. (C) 2016 Elsevier B.V. All rights reserved.
机译:群集方法在数据挖掘和各种其他应用程序中起着重要作用。这项工作基于群体智能对他们进行调查。通过结合K均值聚类方法和贻贝漂移优化算法,提出了一种新的聚类方法。与集成多个单个群集的群集集成(CE)相比,单个群集方法获得了有限的性能,这是公认的。因此,这项工作引入了一种新的CE方法,称为基于权重合并相似性的CE。大小可变的常用数据集用于测试所提出方法的性能。仿真结果说明了所提出的方法相对于某些方法的有效性和性能优势。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2016年第7期|156-164|共9页
  • 作者单位

    Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China;

    Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China;

    New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA|King Abdulaziz Univ, Renewable Energy Res Grp, Jeddah 21413, Saudi Arabia;

    Mercy Coll, Dept Math & Comp Sci, Dobbs Ferry, NY 10522 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data clustering; Clustering ensemble; Swarm intelligence; Optimization;

    机译:数据聚类聚类群体智能优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号