首页> 外文期刊>Knowledge-Based Systems >A smartphone-based activity-aware system for music streaming recommendation
【24h】

A smartphone-based activity-aware system for music streaming recommendation

机译:基于智能手机的活动感知系统,用于音乐流推荐

获取原文
获取原文并翻译 | 示例

摘要

Contextual information is helpful in building systems that can meet users' needs more efficiently and practically. Human activity provides a special kind of contextual information that can be combined with the perceived environmental data to determine appropriate service actions. In this study, we develop a smartphone-based mobile system that includes two core modules for recognizing human activities and then making music streaming recommendation accordingly. Machine learning methods with feature selection techniques are used to perform activity recognition from smartphone signals, and collaborative filtering methods are adopted for music recommendation. A series of experiments are conducted to evaluate the performance of our activity-aware framework. Moreover, we implement a mobile music streaming recommendation system on a smartphone-cloud platform to demonstrate that the proposed approach is practical and applicable to real-world applications. (C) 2017 Elsevier B.V. All rights reserved.
机译:上下文信息有助于构建可以更有效,更实际地满足用户需求的系统。人类活动提供了一种特殊的上下文信息,可以将其与感知到的环境数据结合起来,以确定适当的服务措施。在这项研究中,我们开发了一个基于智能手机的移动系统,其中包括两个核心模块,用于识别人类活动,然后相应地推荐音乐流。具有特征选择技术的机器学习方法用于从智能手机信号执行活动识别,而协作过滤方法则用于音乐推荐。进行了一系列实验以评估我们的活动意识框架的性能。此外,我们在智能手机-云平台上实现了移动音乐流推荐系统,以证明所提出的方法是切实可行的,并适用于实际应用。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号