首页> 外文期刊>Knowledge-Based Systems >Named entity disambiguation for questions in community question answering
【24h】

Named entity disambiguation for questions in community question answering

机译:命名实体消除社区问答中的问题

获取原文
获取原文并翻译 | 示例

摘要

Named entity disambiguation (NED) refers to the task of mapping entity mentions in running texts to the correct entries in a specific knowledge base (e.g., Wikipedia). Although there has been a lot of work on NED for long and formal texts like Wikipedia and news, the task is not well studied for questions in community question answering (CQA). The challenges of the task include little context for mentions in questions, lack of ground truth for learning, and language gaps between CQA and knowledge bases. To overcome these problems, we propose a topic modelling approach to NED for questions. Our model performs learning in an unsupervised manner, but can take advantage of weak supervision signals estimated from the metadata of CQA and knowledge bases. The signals can enrich the context of mentions in questions, and bridge the language gaps between CQA and knowledge bases. Besides these advantages, our model simulates people's behavior in CQA and thus is intuitively interpretable. We conduct experiments on both Chinese and English CQA data. The experimental results show that our method can significantly outperform state-of-the-art methods when we apply them to questions in CQA. (C) 2017 Published by Elsevier B.V.
机译:命名实体歧义消除(NED)是指将运行文本中的实体提及映射到特定知识库(例如Wikipedia)中正确条目的任务。尽管针对NED进行了大量工作,涉及诸如维基百科和新闻之类的正式文本,但对于社区问答(CQA)中的问题,该任务的研究还不够深入。任务的挑战包括问题中很少提及的上下文,缺乏学习的基础真理以及CQA和知识库之间的语言鸿沟。为了克服这些问题,我们针对问题向NED提出了一种主题建模方法。我们的模型以无监督的方式执行学习,但是可以利用从CQA和知识库的元数据中估算的弱监督信号。这些信号可以丰富问题中提及的内容,并弥合CQA和知识库之间的语言鸿沟。除了这些优点之外,我们的模型还可以模拟人们在CQA中的行为,因此可以直观地进行解释。我们对中文和英文CQA数据进行实验。实验结果表明,将其应用于CQA中的问题时,我们的方法可以大大优于最新方法。 (C)2017由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号