首页> 外文期刊>Knowledge-Based Systems >TAP: A personalized trust-aware QoS prediction approach for web service recommendation
【24h】

TAP: A personalized trust-aware QoS prediction approach for web service recommendation

机译:TAP:用于Web服务推荐的个性化信任感知QoS预测方法

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of service-oriented computing, cloud computing and big data, a large number of functionally equivalent web services are available on the Internet. Quality of Service (QoS) becomes a differentiating point of services to attract customers. Since the QoS of services varies widely among users due to the unpredicted network, physical location and other objective factors, many Collaborative Filtering based approaches are recently proposed to predict the unknown QoS by employing the historical user-contributed QoS data. However, most existing approaches ignore the data credibility problem and are thus vulnerable to the unreliable QoS data contributed by dishonest users. To address this problem, we propose a trust-aware approach TAP for reliable personalized QoS prediction. Firstly, we cluster the users and calculate the reputation of users based on the clustering information by a beta reputation system. Secondly, a set of trustworthy similar users is identified according to the calculated user reputation and similarity. Finally, we identify a set of similar services by clustering the services and make prediction for active users by combining the QoS data of the trustworthy similar users and similar services. Comprehensive real-world experiments are conducted to demonstrate the effectiveness and robustness of our approach compared with other state-of-the-art approaches. (C) 2016 Elsevier B.V. All rights reserved.
机译:随着面向服务的计算,云计算和大数据的快速发展,Internet上提供了大量功能等效的Web服务。服务质量(QoS)成为吸引客户的服务差异化点。由于服务的QoS由于不可预测的网络,物理位置和其他客观因素而在用户之间变化很大,因此最近提出了许多基于协作过滤的方法,以通过使用历史用户贡献的QoS数据来预测未知QoS。但是,大多数现有方法都忽略了数据可信度问题,因此容易受到不诚实用户造成的不可靠QoS数据的攻击。为了解决此问题,我们提出了一种用于可靠个性化QoS预测的信任感知方法TAP。首先,我们对用户进行聚类,并通过Beta信誉系统基于聚类信息计算用户的信誉。其次,根据计算出的用户信誉和相似度,确定一组值得信赖的相似用户。最后,我们通过对服务进行聚类来识别一组相似的服务,并通过组合可信赖的相似用户和相似服务的QoS数据对活动用户进行预测。进行了全面的实际实验,以证明我们的方法与其他最新方法相比的有效性和鲁棒性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号