首页> 外文期刊>Knowledge-Based Systems >Establishment of attribute bitmaps for efficient XACML policy evaluation
【24h】

Establishment of attribute bitmaps for efficient XACML policy evaluation

机译:建立属性位图以进行有效的XACML策略评估

获取原文
获取原文并翻译 | 示例

摘要

One of the primary challenges to apply the access control policy language XACML is the performance problem of the policy decision point (PDP), particularly when the PDP experience a great number of policies. The research on improving the PDP evaluation performance is of great significance. By combining with automaton theory an efficient policy decision engine is constructed in this paper, and attribute bitmaps are established statically for each subject, resource and action attribute of policies loaded by the policy decision engine. In evaluating access requests, the policy decision engine dynamically analyzes the requests and extracts the required attribute bitmaps to enforce the AND operation. According to the result of the AND operation, the policy decision engine matches the policies rapidly and gives out an authorization decision. The time that the policy decision engine takes to complete the evaluation of one access request is within 0.5 microsecond. This method not only greatly saves the storage space of policies, but also significantly reduces the time that the PDP takes to match the policies and evaluate access requests. Comparisons of the evaluation time taken by the policy decision engine with that taken by the Sun PDP, as well as XEngine and SBA-XACML, are made under different numbers of access requests. Experimental results show that the evaluation performance of the policy decision engine has a great improvement over that of the Sun PDP, XEngine and SBA-XACML. (C) 2017 Elsevier B.V. All rights reserved.
机译:应用访问控制策略语言XACML的主要挑战之一是策略决策点(PDP)的性能问题,尤其是当PDP经历大量策略时。改善PDP评估性能的研究具有重要意义。结合自动机理论,构建了高效的策略决策引擎,并针对策略决策引擎加载的策略的每个主题,资源和动作属性静态建立了属性位图。在评估访问请求时,策略决策引擎动态分析请求并提取所需的属性位图以强制执行A​​ND操作。根据“与”运算的结果,策略决策引擎快速匹配策略并给出授权决策。策略决策引擎完成对一个访问请求的评估所花费的时间在0.5微秒内。这种方法不仅大大节省了策略的存储空间,而且大大减少了PDP匹配策略和评估访问请求所需的时间。在不同数量的访问请求下,将策略决策引擎与Sun PDP以及XEngine和SBA-XACML所花费的评估时间进行了比较。实验结果表明,与Sun PDP,XEngine和SBA-XACML相比,策略决策引擎的评估性能有了很大的提高。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号