首页> 外文期刊>Knowledge-Based Systems >Immune Generalized Differential Evolution for dynamic multi-objective environments: An empirical study
【24h】

Immune Generalized Differential Evolution for dynamic multi-objective environments: An empirical study

机译:动态多目标环境的免疫广义差分进化:一项实证研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an Immune Generalized Differential Evolution 3 (Immune GDE3) algorithm to solve dynamic multi- objective optimization problems (DMOPs) is empirically analyzed. Three main issues of the algorithm are explored: (1) the general performance of Immune GDE3 in comparison with other well-known algorithms, (2) its sensitivity to different change severities and frequencies, and (3) the role of its change reaction mechanism based on an immune response. For such purpose, four performance metrics, three unary and one binary, are computed in a comparison against other state-of-the-art dynamic multi-objective evolutionary algorithms (DMOEAs) when solving a novel suite of test problems. A proposal for the adaptation of a binary metric, called Two-set-coverage, to evaluate the performance of DMOEAs is also presented in this paper. The statistically validated results indicate that Immune GDE3 is robust to change frequency and severity variations and can track the environmental change finding a good distribution of solutions. Finally, Immune GDE3 has a very competitive performance solving different types of DMOPs and this good performance is mainly attributed to its change reaction mechanism based on an immune response. Numerical results support such findings, showing that Immune GDE3 obtains good results in all performance metrics, especially in the distribution metrics: Spacing(S) and Two-set-coverage(C-metric). (C) 2017 Elsevier B.V. All rights reserved.
机译:本文对基于免疫的广义差分进化3(Immune GDE3)算法进行了动态分析,以解决动态多目标优化问题(DMOP)。探讨了该算法的三个主要问题:(1)与其他知名算法相比,免疫GDE3的一般性能;(2)它对不同变化严重性和频率的敏感性;(3)其变化反应机制的作用基于免疫反应。为此,在解决一整套新颖的测试问题时,与其他最新动态多目标进化算法(DMOEA)进行了比较,计算出四个性能指标(三个一元和一个二进制)。本文还提出了一种采用二进制度量标准的建议,即“二集覆盖”以评估DMOEA的性能。经统计验证的结果表明,免疫GDE3能够强大地改变频率和严重性变化,并且可以跟踪环境变化,找到溶液的良好分布。最后,免疫GDE3在解决不同类型的DMOP方面具有非常有竞争力的性能,而这种良好的性能主要归因于其基于免疫反应的变化反应机制。数值结果支持了这些发现,表明免疫GDE3在所有性能指标(尤其是分布指标:Spacing(S)和Two-set-coverage(C-metric))中均获得了良好的结果。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号