首页> 外文期刊>Journal of Visual Languages & Computing >E-Embed: A time series visualization framework based on earth mover's distance
【24h】

E-Embed: A time series visualization framework based on earth mover's distance

机译:电子嵌入:基于推土机距离的时间序列可视化框架

获取原文
获取原文并翻译 | 示例

摘要

Time series analysis is an important topic in machine learning and a suitable visualization method can be used to facilitate the work of data mining. In this paper, we propose E-Embed: a novel framework to visualize time series data by projecting them into a low-dimensional space while capturing the underlying data structure. In the E-Embed framework, we use discrete distributions to model time series and measure the distances between them by using earth mover's distance (EMD). After the distances between time series are calculated, we can visualize the data by dimensionality reduction algorithms. To combine different dimensionality reduction methods (such as Isomap) that depend on K-nearest neighbor (KNN) graph effectively, we propose an algorithm for constructing a KNN graph based on the earth mover's distance. We evaluate our visualization framework on both univariate time series data and multivariate time series data. Experimental results demonstrate that E-Embed can provide high quality visualization with low computational cost.
机译:时间序列分析是机器学习中的重要主题,可以使用合适的可视化方法来促进数据挖掘的工作。在本文中,我们提出了E-Embed:一种新颖的框架,用于通过将时间序列数据投影到低维空间同时捕获底层数据结构来可视化时间序列数据。在E-嵌入式框架中,我们使用离散分布对时间序列进行建模,并使用推土机距离(EMD)测量它们之间的距离。计算时间序列之间的距离后,我们可以通过降维算法将数据可视化。为了有效地结合依赖于K最近邻(KNN)图的不同维数缩减方法(例如Isomap),我们提出了一种基于推土机距离构造KNN图的算法。我们评估单变量时间序列数据和多元时间序列数据的可视化框架。实验结果表明,E-Embed可以以较低的计算成本提供高质量的可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号