首页> 外文期刊>Journal of Visual Languages & Computing >Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data
【24h】

Uncertainty-aware visual analytics for exploring human behaviors from heterogeneous spatial temporal data

机译:具有不确定性的视觉分析,可用于从异构时空数据中探索人类行为

获取原文
获取原文并翻译 | 示例

摘要

When analyzing human behaviors, we need to construct the human behaviors from multiple sources of data, e.g. trajectory data, transaction data, identity data, etc. The problems we're facing are the data conflicts, different resolution, missing and conflicting data, which together lead to the uncertainty in the spatial temporal data. Such uncertainty in data leads to difficulties and even failure in the visual analytics task for analyzing people behavior, pattern and outliers. However, traditional automatic methods can not solve the problems in such complex scenario, where the uncertain and conflicting patterns are not well-defined. To solve the problems, we proposed a semi-automatic approach, for users to solve the conflicts and identify the uncertainties. To be general, we summarized five types of uncertainties and solutions to conduct the tasks of behavior analysis. Combined with the uncertainty-aware methods, we proposed a visual analytics system to analyze human behaviors, detect patterns and find outliers. Case studies from the IEEE VAST Challenge 2014 dataset confirm the effectiveness of our approach.
机译:在分析人类行为时,我们需要从多个数据源构建人类行为,例如轨迹数据,交易数据,身份数据等。我们面临的问题是数据冲突,分辨率不同,数据丢失和冲突,这些共同导致空间时间数据的不确定性。此类数据不确定性会导致用于分析人员行为,模式和异常值的可视化分析任务遇到困难甚至失败。但是,传统的自动方法无法解决这种不确定性和冲突性模式不明确的复杂情况下的问题。为了解决这些问题,我们提出了一种半自动的方法,供用户解决冲突并确定不确定性。总的来说,我们总结了五种不确定性和解决方案来进行行为分析任务。结合不确定性感知方法,我们提出了一种可视化分析系统来分析人类行为,检测模式并发现异常值。来自IEEE VAST Challenge 2014数据集的案例研究证实了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号