首页> 外文期刊>Journal of Visual Languages & Computing >An Exploration Of Diversified User Strategies For Image Retrieval With Relevance Feedback
【24h】

An Exploration Of Diversified User Strategies For Image Retrieval With Relevance Feedback

机译:具有相关反馈的图像检索用户策略多元化探索

获取原文
获取原文并翻译 | 示例

摘要

Given the difficulty of setting up large-scale experiments with real users,the comparison of content-based image retrieval methods using relevance feedback usually relies on the emulation of the user,following a single,well-prescribed strategy.Since the behavior of real users cannot be expected to comply to strict specifications,it is very important to evaluate the sensitiveness of the retrieval results to likely variations of users' behavior.It is also important to find out whether some strategies help the system to perform consistently better,so as to promote their use.Two selection algorithms for relevance feedback based on support vector machines are compared here.In these experiments,the user is emulated according to eight significantly different strategies on four ground truth databases of different complexity.It is first found that the ranking of the two algorithms does not depend much on the selected strategy.Also,the ranking of the strategies appears to be relatively independent of the complexity of the ground truth databases,which allows to identify desirable characteristics in the behavior of the user.
机译:鉴于难以与真实用户建立大规模实验,因此使用相关性反馈,比较基于内容反馈的基于内容的图像检索方法通常依赖于用户的仿真,遵循单一的,规定明确的策略。由于真实用户的行为不能期望它符合严格的规范,因此,评估检索结果对用户行为可能变化的敏感性非常重要。找出某些策略是否有助于系统始终如一地更好地执行,这一点也很重要。在此比较了两种基于支持向量机的相关性反馈选择算法。在这些实验中,根据八个显着不同的策略,在四个复杂度不同的地面真理数据库上模拟了用户。两种算法在很大程度上不依赖于所选的策略。此外,策略的排名似乎相对独立基本事实数据库的复杂性,可以识别用户行为中的理想特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号