首页> 外文期刊>Journal of Thermophysics and Heat Transfer >Vibrational Population Enhancement in Nonequilibrium Dissociating Hypersonic Nozzle Flows
【24h】

Vibrational Population Enhancement in Nonequilibrium Dissociating Hypersonic Nozzle Flows

机译:非平衡解离高超声速喷嘴流中的振动种群增强

获取原文
获取原文并翻译 | 示例
       

摘要

A computational study was conducted for hypersonic expanding nozzle flows of oxygen to define the role of vibrational population enhancement in the development of vibration-dissociation coupling model. For the reacting gas case, the higher atom-recombination rate compared to the dissociation rate was found to be responsible for the vibrational population enhancement downstream of the nozzle. For use in the development of vibration-dissociation coupling models, the physics of these recombination-dominant flows is contrasted to dissociation-dominant flows, typically, encountered behind shock waves. Behind shock waves, the vibrational population is depleted as a result of dissociation where the coupling simulates the competition between the dominant vibration-translation processes (compared to V-V), which primarily restore equilibrium and the dissociation processes involving the molecular transitions to the continuous vibrational state that perturb the equilibrium state. In nozzle flows, however, the vibrational population is enhanced downstream of the nozzle as a result of the higher atom recombination. The population enhancement in nozzle flows leads to a reduction of the effective recombination rate. Both population depletion and enhancement play a crucial role in the vibration-dissociation coupling models used in hypersonic computational-fluid-dynamics codes.
机译:对超音速扩展氧气喷嘴流量进行了计算研究,以定义振动种群增强在振动离解耦合模型的开发中的作用。对于反应气体的情况,发现与解离速率相比,更高的原子重组速率是导致喷嘴下游振动种群增加的原因。为了在振动解离耦合模型的开发中使用,这些复合主导流的物理特性与通常在冲击波后遇到的解离主导流相反。在冲击波之后,由于解离而使振动总体耗尽,其中耦合模拟了主要的振动平移过程(与VV相比)之间的竞争,该过程主要恢复了平衡,并且解离过程涉及分子转变为连续振动状态扰动平衡状态。但是,在喷嘴流动中,由于较高的原子重组,振动的分布在喷嘴的下游增加了。喷嘴流量的增加会导致有效复合率降低。人口的减少和增加在高超声速计算流体动力学代码中使用的振动-解离耦合模型中都起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号