首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Quasi-static incremental behavior of granular materials: Elastic-plastic coupling and micro-scale dissipation
【24h】

Quasi-static incremental behavior of granular materials: Elastic-plastic coupling and micro-scale dissipation

机译:颗粒材料的准静态增量行为:弹塑性耦合和微尺度耗散

获取原文
获取原文并翻译 | 示例
       

摘要

The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo–Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of2×10−6. At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.
机译:本文提出了弹塑性模型的一个常见假设:可恢复的弹性应变增量不受载荷引起的弹性模量变化的影响。发现该假设对于粒状材料是错误的,并且离散元素(DEM)模拟表明粒状材料是微观和宏观尺度上的耦合材料。宏观上的弹塑性耦合被放置在Tomasz Hueckel和Hans Ziegler的热力学框架中,其中弹性模量在加载过程中通过不可逆过程而改变。对于遵循初始单调加载的多向加载探针,探索了这种复杂的行为。在研究中使用了高级DEM模型,具有非凸非球形粒子和两个不同的接触模型:常规的线性摩擦模型和类似于Hertz的Cattaneo-Mindlin模型的精确实现。本研究使用正交各向异性真三轴探针(即无直接剪切应变),应变增量为2×10-6很小。在微观尺度上,在微小的载荷增量和载荷反向过程中监测了接触运动,结果表明,这些运动不会因应变方向的反向而反向,并且在载荷增量过程中滑动的一些接触在运动过程中继续滑动。逆转。探针表明,将应变增量分为弹性和塑性部分时,必须考虑应变增量的耦合部分,即可恢复(弹性)增量与其可逆部分之间的差异。在所有载荷方向上都会发生不可逆(塑性)应变,接触滑移和摩擦耗散的小增量,并且如果存在弹性域,则其弹性域小于模拟中使用的应变增量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号