首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Quantifying the effect of hydrogen on dislocation dynamics: three-dimensional discrete dislocation dynamics framework
【24h】

Quantifying the effect of hydrogen on dislocation dynamics: three-dimensional discrete dislocation dynamics framework

机译:量化氢对位错动力学的影响:三维离散位错动力学框架

获取原文
获取原文并翻译 | 示例
       

摘要

We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.
机译:我们提出了一个新的框架,以使用大规模三维(3D)离散位错动力学(DDD)模拟来量化氢对位错的影响。在该模型中,考虑了与氢引起的体积变化相关的一阶弹性相互作用能。由氢浓度引起的三维应力张量(相对于位错应力场处于平衡状态)是使用Eshelby包含模型导出的,而氢的体积扩散则被视为连续过程。这个新开发的框架用于量化在没有施加应力场的情况下,不同氢浓度对滑移位错动力学的影响,以及对平行边缘位错阵列中位错之间的间距的影响。对于氢扩散系数大的材料,观察到了屏蔽效果,该屏蔽效果导致收缩过程的均匀化,从而导致滑环保持其圆形形状,并导致阵列中位错分离距离的减小平行边缘位错。另一方面,对于氢扩散系数小的材料,位错的边缘特征附近的高氢浓度起到将其钉扎的作用。需要更高的应力才能使位错从周围的氢云中解脱出来。最后,这个新的框架可以为氢在位错介导的金属可塑性的不同方面的进一步研究打开大门。在对当前配方进行较小修改的情况下,也可以扩展该框架,以解决离散位错动力学模拟中一般由夹杂物引起的应力场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号