首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance
【24h】

Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance

机译:珍珠母状材料的离散元素建模:随机微观结构对应变局部化和机械性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Natural materials such as nacre, collagen, and spider silk are composed of staggered stiff and strong inclusions in a softer matrix. This type of hybrid microstructure results in remarkable combinations of stiffness, strength, and toughness and it now inspires novel classes of high-performance composites. However, the analytical and numerical approaches used to predict and optimize the mechanics of staggered composites often neglect statistical variations and inhomogeneities, which may have significant impacts on modulus, strength, and toughness. Here we present an analysis of localization using small representative volume elements (RVEs) and large scale statistical volume elements (SVEs) based on the discrete element method (DEM). DEM is an efficient numerical method which enabled the evaluation of more than 10,000 microstructures in this study, each including about 5,000 inclusions. The models explore the combined effects of statistics, inclusion arrangement, and interface properties. We find that statistical variations have a negative effect on all properties, in particular on the ductility and energy absorption because randomness precipitates the localization of deformations. However, the results also show that the negative effects of random microstructures can be offset by interfaces with large strain at failure accompanied by strain hardening. More specifically, this quantitative study reveals an optimal range of interface properties where the interfaces are the most effective at delaying localization. These findings show how carefully designed interfaces in bioinspired staggered composites can offset the negative effects of microstructural randomness, which is inherent to most current fabrication methods.
机译:天然材料(如珍珠母,胶原蛋白和蜘蛛丝)由交错的硬质和强固性夹杂物组成,且基质柔软。这种类型的混合微观结构导致刚度,强度和韧性的显着组合,现在激发了新型的高性能复合材料。但是,用于预测和优化交错复合材料力学的分析和数值方法通常会忽略统计变化和不均匀性,这可能会对模量,强度和韧性产生重大影响。在这里,我们介绍了基于离散元素方法(DEM)的使用小型代表体积元素(RVE)和大型统计体积元素(SVE)的定位分析。 DEM是一种有效的数值方法,可以在本研究中评估10,000多个微结构,每个微结构包括大约5,000个夹杂物。这些模型探索了统计,包含排列和界面属性的综合效果。我们发现统计变化对所有属性都具有负面影响,特别是对延展性和能量吸收具有负面影响,因为随机性会导致变形的局部化。但是,结果还表明,随机失效的微观结构的负面影响可以被破坏时伴随着应变硬化的大应变界面抵消。更具体地说,这项定量研究揭示了界面特性的最佳范围,其中界面在延迟定位方面最有效。这些发现表明,在生物启发的交错式复合材料中精心设计的界面如何能够抵消微观结构随机性的负面影响,这是当前大多数制造方法所固有的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号