...
首页> 外文期刊>Journal of the American Chemical Society >Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted ~(13)C Labeling and ENDOR Spectroscopy
【24h】

Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted ~(13)C Labeling and ENDOR Spectroscopy

机译:通过靶向〜(13)C标记和注册光谱法探索氮酶活性位股骨型股骨辅助剂中枢碳化物的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Mo-dependent nitrogenase is a major contributor to global biological N_2 reduction, which sustains life on Earth. Its multi-metallic active-site FeMo-cofactor (Fe_7MoS_9C-homocitrate) contains a carbide (C~(4-)) centered within a trigonal prismatic CFe_6 core resembling the structural motif of the iron carbide, cementite. The role of the carbide in FeMo-cofactor binding and activation of substrates and inhibitors is unknown. To explore this role, the carbide has been in effect selectively enriched with ~(13)C, which enables its detailed examination by ENDOR/ESEEM spectroscopies. ~(13)C-carbide ENDOR of the S = 3/2 resting state (E_0) is remarkable, with an extremely small isotropic hyperfine coupling constant, ~Ca = +0.86 MHz. Turnover under high CO partial pressure generates the S = 1/2 hi-CO state, with two CO molecules bound to FeMo-cofactor. This conversion surprisingly leaves the small magnitude of the ~(13)C carbide isotropic hyperfine-coupling constant essentially unchanged, ~Ca = -1.30 MHz. This indicates that both the E_0 and hi-CO states exhibit an exchange-coupling scheme with nearly cancelling contributions to ~Ca from three spin-up and three spin-down carbide-bound Fe ions. In contrast, the anisotropic hyperfine coupling constant undergoes a symmetry change upon conversion of E_0 to hi-CO that may be associated with bonding and coordination changes at Fe ions. In combination with the negligible difference between CFe_6 core structures of E_0 and hi-CO, these results suggest that in CO-inhibited hi-CO the dominant role of the FeMo-cofactor carbide is to maintain the core structure, rather than to facilitate inhibitor binding through changes in Fe-carbide covalency or stretching/breaking of carbide-Fe bonds.
机译:Mo依赖性亚硝酸酶是全球生物N_2减少的主要贡献者,其维持地球上的生命。其多金属磁极性部位股骨辅助因子(FE_7MOS_9C-同柠檬酸酯)含有碳化物(C〜(4-)),其以三角形棱镜CFE_6核心为中心,类似于铁碳化物,渗碳石结构基序。碳化物在股骨辅因子结合和底物激活的作用是未知的。为了探讨这种作用,碳化物有效地富含〜(13)C,这使得能够通过Endor / Eseem光谱进行详细检查。 〜(13)S = 3/2静态状态(E_0)的C碳化物终端是显着的,具有极小的各向同性高浓度耦合恒定,〜Ca = +0.86 MHz。在高Co部分压力下的营业额产生S = 1/2 Hi-Co状态,其中两个CO分子与股骨辅因子结合。这种转化率令人惊讶地留下〜(13)C碳化物各向同性高浓度耦合恒定的少量幅度,基本不变,〜Ca = -1.30 MHz。这表明E_0和HI-CO表展示了交换偶联方案,其具有几乎取消了来自三个旋转和三个旋转碳化碳化的Fe离子的〜Ca的贡献。相反,各向异性高浓缩偶联常数经历对称性变化,当转化为HI-Co时,可能与Fe离子的键合和配位变化相关。结合E_0和HI-CO的CFE_6核心结构之间的可忽略差异,这些结果表明,在共同抑制的高CO中,股骨辅因子碳化物的主导作用是保持核心结构,而不是促进抑制剂结合通过碳化铁碳化物共价或碳化铁键的拉伸/破裂的变化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第24期|9183-9190|共8页
  • 作者单位

    Department of Biochemistry Virginia Tech Blacksburg Virginia 24061 United States;

    Department of Chemistry and Biochemistry Utah State University Logan Utah 84322 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

    Department of Biochemistry Virginia Tech Blacksburg Virginia 24061 United States;

    Department of Chemistry and Biochemistry Utah State University Logan Utah 84322 United States;

    Department of Chemistry Northwestern University Evanston Illinois 60208 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号