...
首页> 外文期刊>Journal of the American Chemical Society >Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal-Organic Frameworks with Large Pseudocapacitance and Wide Potential Window
【24h】

Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal-Organic Frameworks with Large Pseudocapacitance and Wide Potential Window

机译:双氧化还原源使二维共轭金属 - 有机框架具有大的伪宽度和宽潜在窗口

获取原文
获取原文并翻译 | 示例
           

摘要

Advanced supercapacitor electrodes require the development of materials with dense redox sites embedded into conductive and porous skeletons. Two-dimensional (2D) conjugated metal-organic frameworks (c-MOFs) are attractive supercapacitor electrode materials due to their high intrinsic electrical conductivities, large specific surface areas, and quasi-one-dimensional aligned pore arrays. However, the reported 2D c-MOFs still suffer from unsatisfying specific capacitances and narrow potential windows because large and redox-inactive building blocks lead to low redox-site densities of 2D c-MOFs. Herein, we demonstrate the dual-redox-site 2D c-MOFs with copper phthalocyanine building blocks linked by metal-bis-(iminobenzosemiquinoid) (M_2[CuPc(NH)_8], M = Ni or Cu), which depict both large specific capacitances and wide potential windows. Experimental results accompanied by theoretical calculations verify that phthalocyanine monomers and metal-bis(iminobenzosemiquinoid) linkages serve as respective redox sites for pseudocapacitive cation (Na~+) and anion (SO_4~(2-)) storage, enabling the continuous Faradaic reactions of M_2[CuPc(NH)_8] occurring in a large potential window of -0.8 to 0.8 V vs Ag/AgCl (3 M KCl). The decent conductivity (0.8 S m~(-1)) and high active-site density further endow the Ni_2[CuPc(NH)_8] with a remarkable specific capacitance (400 F g~(-1) at 0.5 A g~(-1)) and excellent rate capability (183 F g~(-1) at 20 A g~(-1)). Quasi-solid-state symmetric supercapacitors are further assembled to demonstrate the practical application of Ni_2[CuPc(NH)_8] electrode, which deliver a state-of-the-art energy density of 51.6 Wh kg~(-1) and a peak power density of 32.1 kW kg~(-1).
机译:先进的超级电容器电极要求嵌入导电和多孔骨架中的致密氧化还原部位的材料的发展。二维(2D)共轭金属 - 有机框架(C-MOF)是由于其高固有电导率,大的比表面积和准一维对齐的孔阵列引起的超级电容器电极材料。然而,报告的2D C-MOF仍然遭受不满意的特定电容和窄潜在窗口,因为大型和氧化还原的构建块导致2D C-MOF的低氧化还原位数密度。在此,我们证明了用金属 - 双(伊纳米蛋白酶喹啉偶联)(M_2 [CUPC(NH)[CUPC(NH)_8],M = Ni或Cu)连接的铜酞菁构建块的双氧化还原位点2D C-MOF,其描绘了大特异性电容和宽电位窗口。实验结果伴随着理论计算,验证了酞菁单体和金属 - 双(Iminobenzoseminoid)键作为伪电容阳离子(Na〜+)和阴离子(SO_4〜(2-))储存的相应氧化还原位点,从而实现M_2的连续游览反应[Cupc(NH)_8]在-0.8至0.8V VS Ag / AgCl(3M KCl)的大潜在窗口中发生。体面的电导率(0.8秒M〜(-1))和高的有效点密度进一步赋予Ni_2 [Cupc(NH)_8],具有显着的特定电容(400 f g〜(-1),0.5 a g〜( -1))和优异的速率能力(183 f g〜(-1),20 a g〜(-1))。进一步组装了准固态对称的超级电容器以证明Ni_2 [Cupc(NH)_8]电极的实际应用,该电极提供51.6WHKG〜(-1)和峰值的最先进的能量密度功率密度为32.1kW kg〜(-1)。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第27期|10168-10176|共9页
  • 作者单位

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Material Systems for Nanoelectronics Chemnitz University of Technology 09107 Chemnitz Germany Institute for Integrative Nanosciences IFW Dresden 01069 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Institute of Ion Beam Physics and Materials Research Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Material Systems for Nanoelectronics Chemnitz University of Technology 09107 Chemnitz Germany Institute for Integrative Nanosciences IFW Dresden 01069 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

    Material Systems for Nanoelectronics Chemnitz University of Technology 09107 Chemnitz Germany Institute for Integrative Nanosciences IFW Dresden 01069 Dresden Germany;

    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universitaet Dresden 01062 Dresden Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号