首页> 外文期刊>Journal of the American Chemical Society >Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by ~(13)C~2H-ADT Labeling
【24h】

Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by ~(13)C~2H-ADT Labeling

机译:〜2H-ADT标记揭示的[FEFE]氢酶H-簇的振动扰动

获取原文
获取原文并翻译 | 示例
           

摘要

[FeFe] hydrogenases are highly active catalysts for the interconversion of molecular hydrogen with protons and electrons. Here, we use a combination of isotopic labeling, ~(57)Fe nuclear resonance vibrational spectroscopy (NRVS), and density functional theory (DFT) calculations to observe and characterize the vibrational modes involving motion of the 2-azapropane-l,3-dithiolate (ADT) ligand bridging the two iron sites in the [2Fe]_H subduster. A -~(13)C~2H_2- ADT labeling in the synthetic diiron precursor of [2Fe]_H produced isotope effects observed throughout the NRVS spectrum. The two precursor isotopologues were then used to reconstitute the H-cluster of [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydAl), and NRVS was measured on samples poised in the catalytically crucial H_(hyd) state containing a terminal hydride at the distal Fe site. The ~(13)C~2H isotope effects were observed also in the H_(hyd) spectrum. DFT simulations of the spectra allowed identification of the ~(57)Fe normal modes coupled to the ADT ligand motions. Particularly, a variety of normal modes involve shortening of the distance between the distal Fe-H hydride and ADT N-H bridgehead hydrogen, which may be relevant to the formation of a transition state on the way to H_2 formation.
机译:氢酶是高活性催化剂,用于将分子氢与质子和电子互连。在这里,我们使用同位素标记,〜(57)Fe核共振振动光谱(NRV)的组合,以及密度泛函理论(DFT)计算,以观察和表征涉及2-Azapropane-L,3-的运动的振动模式二硫酸盐(ADT)配体桥接[2FE] _h次调节器中的两个铁位点。 A - 〜(13)C〜2H_2-ADT标记在[2FE]的合成亚肌前体中_h产生的同位素效应在整个NRVS光谱中观察到。然后使用两种前体同位素从衣原体中重组氯氨酰菌酸的H-液体氢酶的H-簇,并且在含有在远端Fe位点的含有末端氢化物的催化至关重要的H_(HYDE)状态下的样品上测量NRV。 。在H_(HYD)光谱中也观察到〜(13)C〜2H同位素效应。光谱的DFT模拟允许鉴定〜(57)Fe正常模式偶联到ADT配体运动。特别地,各种正常模式涉及缩短远端Fe-H氢化物和ADT N-H桥头氢气之间的距离,这可以与转变状态的形成相关的距离对H_2形成。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第22期|8237-8243|共7页
  • 作者单位

    Institut fuer Chemie Technische Universitaet Berlin 10623 Berlin Germany;

    Max Planck Institute for Chemical Energy Conversion 45470 Muelheim an der Ruhr Germany;

    Department of Chemistry Stanford University Stanford California 94305 United States;

    School of Chemical Sciences University of Illinois Urbana Illinois 61801 United States;

    Max Planck Institute for Chemical Energy Conversion 45470 Muelheim an der Ruhr Germany;

    SETI Institute Mountain View California 94043 United States;

    IFP Energies nouvelles 92852 Rueil- Malmaison France Department of Chemistry University of California Davis California 95616 United States;

    Department of Chemistry University of California Davis California 95616 United States;

    Precision Spectroscopy Division SPring-8/ JASRI Sayo Hyogo 679-5198 Japan;

    Life Science Research Infrastructure Group Advanced Photon Technology Division RIKEN/ SPring-8 Center Sayo Hyogo 679-5148 Japan;

    Hyogo Science and Technology Association Synchrotron Radiation Research Center Tatsuno-shi Hyogo 679-5165 Japan;

    Research and Utilization Division SPring- 8/JASRI Sayo Hyogo 679-5198 Japan;

    School of Chemical Sciences University of Illinois Urbana Illinois 61801 United States;

    Max Planck Institute for Chemical Energy Conversion 45470 Muelheim an der Ruhr Germany;

    SETI Institute Mountain View California 94043 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号