首页> 外文期刊>Journal of the American Chemical Society >Engineering Second Sphere Interactions in a Host-Guest Multicomponent Catalyst System for the Hydrogenation of Carbon Dioxide to MethanoI
【24h】

Engineering Second Sphere Interactions in a Host-Guest Multicomponent Catalyst System for the Hydrogenation of Carbon Dioxide to MethanoI

机译:宿主式多组分催化剂系统中的工程第二球相互作用,用于甲基二氧化碳氢化二氧化碳

获取原文
获取原文并翻译 | 示例
           

摘要

Many enzymes utilize interactions extending beyond the primary coordination sphere to enhance catalyst activity and/or selectivity. Such interactions could improve the efficacy of synthetic catalyst systems, but the supramolecular assemblies employed by biology to incorporate second sphere interactions are challenging to replicate in synthetic catalysts. Herein, a strategy is reported for efficiently manipulating outer-sphere influence on catalyst reactivity by modulating host-guest interactions between a noncovalently encapsulated transition-metal-based catalyst guest and a metal-organic framework (MOF) host. This composite consists of a ruthenium PNP pincer complex encapsulated in the MOF UiO-66 that is used in tandem with the zirconium oxide nodes of UiO-66 and a ruthenium PNN pincer complex to hydrogenate carbon dioxide to methanol. Due to the method used to incorporate the complexes in UiO-66, structure-activity relationships could be efficiently determined using a variety of functionalized UiO-66-X hosts. These investigations uncovered the beneficial effects of the ammonium functional group (i.e., UiO-66-NH_3~+). Mechanistic experiments revealed that the ammonium functionality improved efficiency in the hydrogenation of carbon dioxide to formic acid, the first step in the cascade. Isotope effects and structure-activity relationships suggested that the primary role of the ammonium functionality is to serve as a general Bronsted acid. Importantly, the cooperative influence from the host was effective only with the functional group in close proximity to the encapsulated catalyst. Reactions carried out in the presence of molecular sieves to remove water highlighted the beneficial effects of the ammonium functional group in UiO-66-NH_3~+ and resulted in a 4-fold increase in activity. As a result of the modular nature of the catalyst system, the highest reported turnover number (TON) (19 000) and turnover frequency (TOF) (9100 h~(-1)) for the hydrogenation of carbon dioxide to methanol are obtained. Moreover, the reaction was readily recyclable, leading to a cumulative TON of 100 000 after 10 reaction cycles.
机译:许多酶利用延伸超过初级协调球的相互作用,以增强催化剂活性和/或选择性。这种相互作用可以提高合成催化剂体系的功效,但是生物学采用的超分子组件掺入第二间球相互作用是挑战在合成催化剂中复制。在此,据报道,通过调节非共价包封的过渡金属基催化剂访客和金属 - 有机骨架(MOF)宿主之间的宿主相制,有效地操纵外球对催化剂反应性的影响。该复合材料包括在MOF UIO-66中包封的钌PNP钳子复合物,其与UIO-66的氧化锆节点和钌PNN钳子复合物一起使用,以将二氧化碳氢化成甲醇。由于用于在UIO-66中掺入复合物的方法,可以使用各种官能化的UIO-66-X主机有效地确定结构 - 活性关系。这些研究发现铵官能团(即,UIO-66-NH_3〜+)的有益作用。机械实验表明,铵功能提高了二氧化碳氢化到甲酸的效率,级联的第一步。同位素效应和结构 - 活性关系表明,铵官能团的主要作用是用作一般的伪造酸。重要的是,来自宿主的合作影响仅在密封催化剂附近的官能团的情况下有效。在分子筛存在下除去水的反应突出了UIO-66-NH_3〜+中铵官能团的有益作用,并导致活性增加4倍。由于催化剂体系的模块化性质,获得了用于氢化二氧化碳与甲醇的最高报告的周转数(吨)(吨)(19 000)和周转频率(TOF)(9100h〜(-1))。此外,反应容易可回收,导致10次反应循环后10000℃的累积吨。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第3期|1630-1640|共11页
  • 作者单位

    Department of Chemistry Boston College Chestnut Hill Massachusetts 02467 United States;

    Department of Chemistry Boston College Chestnut Hill Massachusetts 02467 United States;

    Department of Chemistry Boston College Chestnut Hill Massachusetts 02467 United States;

    Department of Chemistry Boston College Chestnut Hill Massachusetts 02467 United States;

    Department of Chemistry Boston College Chestnut Hill Massachusetts 02467 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号