首页> 外文期刊>Journal of the American Chemical Society >Charge Transfer and Chemo-Mechanical Coupling in Respiratory Complex Ⅰ
【24h】

Charge Transfer and Chemo-Mechanical Coupling in Respiratory Complex Ⅰ

机译:呼吸络合物中的电荷转移和化学机械耦合Ⅰ

获取原文
获取原文并翻译 | 示例
           

摘要

The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex Ⅰ, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox- driven conformational transitions and their interplay with the hydrated proton pathways. Complex Ⅰ from Thermus thermophilus encases 16 subunits with nine iron-sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex Ⅰ, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron-sulfur clusters and conformational transitions across complex Ⅰ. First, we identify the redox switches within complex Ⅰ, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol form-a design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex Ⅰ.
机译:由五种蛋白质复合物形成的线粒体呼吸链利用来自分解代谢过程的能量来合成ATP。复合体Ⅰ,链条的第一和最大蛋白质复合物,从NADH收获电子以减少醌,同时泵送模型膜的质子。然而,由于了解氧化氧驱动的构象过渡及其与水合质子途径的相互作用而导致这种耦合电荷转移过程的工作原理的详细知识仍然存在碎片。来自Hexitus Heathophilus的综合体Ⅰ包围16个亚基,含有九个铁硫簇,通过NADH的电子减少。这里,采用T.Mirthophilus ComplexⅠ的最新晶体结构Ⅰ,我们使用了微秒的分子动力学模拟,研究了氧化铈簇的氧化还原变化与络合物Ⅰ的构象过渡之间的化学机械耦合。首先,我们识别复杂Ⅰ内的氧化还原开关,其构成醌结合口袋的动态耦合到NADH减少部位。其次,我们的自由能计算揭示了醌,特异性母醌的亲和力,对结合位点高于其减少的细胞蛋白醇形式的母细胞释放至关重要的设计。值得注意的是,扩散苯醌动力学的障碍比更普遍的泛醌更小,而前者的萘醌头组与口袋提供较强的结合相互作用,有利于母细胞的电荷转运母猪。我们的计算与实验验证的突变一致,并将关键残留物分为三个功能类,识别新的突变目标。第三,发现将醌粘结位点连接到跨膜亚基的远程氢键网络是对质子泵送的负责。施加在一起,仿真揭示了将氧化还原反应连接到奎尼昂转运中的分子设计原理,以复合体Ⅰ的质子易位。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第20期|9220-9230|共11页
  • 作者单位

    School of Molecular Sciences and Biodesign Institute Arizona State University Tempe Arizona 85281 United States;

    Department of Physics City College of New York New York New York 10031 United States Department of Physics City University of New York New York New York 10017 United States;

    Department of Physics University of Illinois at Urbana-Champaign Urbana Illinois 61801 United States;

    University of Lorraine Nancy 54000 France;

    Department of Physics University of Illinois at Urbana-Champaign Urbana Illinois 61801 United States;

    Department of Physics City College of New York New York New York 10031 United States Department of Physics City University of New York New York New York 10017 United States;

    Department of Physics University of Illinois at Urbana-Champaign Urbana Illinois 61801 United States University of Lorraine Nancy 54000 France;

    Institute of Science and Technology 3400 Klosterneuburg Austria;

    School of Molecular Sciences and Biodesign Institute Arizona State University Tempe Arizona 85281 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号