首页> 外文期刊>Journal of the American Chemical Society >Strategies for Enhancing the Rate Constant of C-H Bond Cleavage by Concerted Proton-Coupled Electron Transfer
【24h】

Strategies for Enhancing the Rate Constant of C-H Bond Cleavage by Concerted Proton-Coupled Electron Transfer

机译:协同质子耦合电子转移提高C-H键裂解速率常数的策略

获取原文
获取原文并翻译 | 示例
           

摘要

Recently selective C-H bond cleavage under mild conditions with weak oxidants was reported for fluorenyl-benzoates. This mechanism is based on multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an outer-sphere oxidant coupled to intramolecular proton transfer to a well-positioned proton acceptor. The electron transfer driving force depends predominantly on the oxidant, and the proton transfer driving force depends mainly on the basicity of the carboxylate, which is influenced by the substituent on the benzoate fragment. Experiments showed that the rate constants are much more sensitive to the carboxylate basicity than to the redox potential of the oxidant. Herein a vibronically nonadiabatic PCET theory is used to explain how changing the driving force for the electron and proton transfer components of the reaction through varying the oxidant and the substituent, respectively, impacts the PCET rate constant. In addition to increasing the driving force for proton transfer, enhancing the basicity of the carboxylate also decreases the equilibrium proton donor-acceptor distance, thereby facilitating the sampling of shorter proton donor-acceptor distances. This additional effect arising from the strong dependence of proton transfer on the proton donor-acceptor distance provides an explanation for the greater sensitivity of the rate constant to the carboxylate basicity than to the redox potential of the oxidant. These fundamental insights have broad implications for developing new strategies to activate C-H bonds, specifically by designing systems with shorter equilibrium proton donor-acceptor distances.
机译:据报道,最近在弱氧化剂下在温和条件下选择性的C-H键裂解导致芴基-苯甲酸酯。该机制基于多点协同质子耦合电子转移(PCET),涉及分子间电子转移至外层氧化剂,分子内质子转移至位置良好的质子受体。电子转移驱动力主要取决于氧化剂,而质子转移驱动力主要取决于羧酸根的碱度,其受苯甲酸酯片段上的取代基影响。实验表明,速率常数对羧酸盐的碱度比对氧化剂的氧化还原电位更敏感。在本文中,使用了非绝热的PCET理论,来解释如何通过分别改变氧化剂和取代基来改变反应的电子和质子转移组分的驱动力如何影响PCET速率常数。除了增加质子转移的驱动力外,增强羧酸盐的碱度还降低了平衡质子供体-受体距离,从而有利于较短的质子供体-受体距离的采样。质子转移对质子供体-受体距离的强烈依赖性所产生的这种附加效应为速率常数对羧酸盐碱度比对氧化剂的氧化还原电位的更大敏感性提供了一个解释。这些基本见解对于开发激活C-H键的新策略具有广泛的意义,特别是通过设计平衡质子供体-受体距离较短的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号