首页> 外文期刊>Journal of the American Chemical Society >Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells
【24h】

Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells

机译:微调半导体聚合物的自聚集性和结晶度可实现最佳形态和高性能印刷全聚合物太阳能电池

获取原文
获取原文并翻译 | 示例
       

摘要

Polymer aggregation and crystallization behavior play a crucial role in the performance of all-polymer solar cells (all-PSCs). Gaining control over polymer self-assembly via molecular design to influence bulk-heterojunction active-layer morphology, however, remains challenging. Herein, we show a simple yet effective way to modulate the self-aggregation of the commonly used naphthalene diimide (NDI)-based acceptor polymer (N2200), by systematically replacing a certain amount of alkyl side-chains with compact bulky side-chains (CBS). Specifically, we have synthesized a series of random copolymer (PNDI-CBS_x) with different molar fractions (χ = 0-1) of the CBS units and have found that both solution-phase aggregation and solid-state crystallinity of these acceptor polymers are progressively suppressed with increasing χ as evidenced by UV—vis absorption, photoluminescence (PL) spectroscopies, thermal analysis, and grazing incidence X-ray scattering (GIWAXS) techniques. Importantly, as compared to the highly self-aggregating N2200, photovoltaic results show that blending of more amorphous acceptor polymers with donor polymer (PBDB-T) can enable all-PSCs with significantly increased PCE (up to 8.5%). The higher short-circuit current density (J_(sc)) results from the smaller polymer phase-separation domain sizes as evidenced by PL quenching and resonant soft X-ray scattering (R-SoXS) analyses. Additionally, we show that the lower crystallinity of the active layer is less sensitive to the film deposition methods. Thus, the transition from spin-coating to solution coating can be easily achieved with no performance losses. On the other hand, decreasing aggregation and crystallinity of the acceptor polymer too much reduces the photovoltaic performance as the donor phase-separation domain sizes increases. The highly amorphous acceptor polymers appear to induce formation of larger donor polymer crystallites. These results highlight the importance of a balanced aggregation strength between the donor and acceptor polymers to achieve high-performance all-PSCs with optimal active layer film morphology.
机译:聚合物的聚集和结晶行为在全聚合物太阳能电池(all-PSC)的性能中起着至关重要的作用。然而,通过分子设计获得对聚合物自组装的控制以影响本体-异质结活性层的形态仍然具有挑战性。本文中,我们展示了一种简单而有效的方法,可以通过用致密的大体积侧链系统地取代一定数量的烷基侧链,来调节常用的基于萘二酰亚胺(NDI)的受体聚合物(N2200)的自聚集( CBS)。具体而言,我们合成了一系列具有不同摩尔分数(χ= 0-1)的CBS单元的无规共聚物(PNDI-CBS_x),并且发现这些受体聚合物的溶液相聚集和固态结晶性都在逐步提高UV吸收,光致发光(PL)光谱,热分析和掠入射X射线散射(GIWAXS)技术证明,随着χ的增加而受到抑制。重要的是,与高度自聚集的N2200相比,光伏结果表明,将更多无定形受体聚合物与施主聚合物(PBDB-T)共混可以使全PCC的PCE显着增加(高达8.5%)。 PL猝灭和共振软X射线散射(R-SoXS)分析证明,较高的短路电流密度(J_(sc))来自较小的聚合物相分离域尺寸。另外,我们表明活性层的较低结晶度对膜沉积方法较不敏感。因此,可以容易地实现从旋涂到溶液涂覆的过渡而没有性能损失。另一方面,随着供体相分离域尺寸的增加,受体聚合物的聚集和结晶度的降低过多降低了光伏性能。高度无定形的受体聚合物似乎诱导形成较大的供体聚合物微晶。这些结果凸显了供体和受体聚合物之间平衡的聚集强度对于获得具有最佳活性层膜形态的高性能全PSC的重要性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第1期|392-406|共15页
  • 作者单位

    Department of Chemical Engineering;

    Department of Chemistry Stanford University Stanford California 94305-4125 United States Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park California 94025 United States;

    Department of Electrical Engineering Center for Advanced Photovoltaics South Dakota State University Brookings South Dakota 57007 United States;

    Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park California 94025 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 05:17:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号