首页> 外文期刊>Journal of the American Chemical Society >In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO_2 Electroreduction
【24h】

In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO_2 Electroreduction

机译:原位红外光谱显示在CO_2电还原过程中电极表面附近的持久碱度

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past decade, electrochemical carbon dioxide reduction has become a thriving area of research with the aim of converting electricity to renewable chemicals and fuels. Recent advances through catalyst development have significantly improved selectivity and activity. However, drawing potential dependent structure-activity relationships has been complicated, not only due to the ill-defined and intricate morphological and mesoscopic structure of electrocatalysts, but also by immense concentration gradients existing between the electrode surface and bulk solution. In this work, by using in situ surface enhanced infrared absorption spectroscopy (SEIRAS) and computational modeling, we explicitly show that commonly used strong phosphate buffers cannot sustain the interfacial pH during CO2 electroreduction on copper electrodes at relatively low current densities, <10 mA/cm(2). The pH near the electrode surface was observed to be as much as 5 pH units higher compared to bulk solution in 0.2 M phosphate buffer at potentials relevant to the formation of hydrocarbons (-1 V vs RHE), even on smooth polycrystalline copper electrodes. Drastically increasing the buffer capacity did not stand out as a viable solution for the problem as the concurrent production of hydrogen increased dramatically, which resulted in a breakdown of the buffer in a narrow potential range. These unforeseen results imply that most of the studies, if not all, on electrochemical CO2 reduction to hydrocarbons in CO2 saturated aqueous solutions were evaluated under mass transport limitations on copper electrodes. We underscore that the large concentration gradients on electrodes with high local current density (e.g., nanostructured) have important implications on the selectivity, activity, and kinetic analysis, and any attempt to draw structure-activity relationships must rule out mass transport effects.
机译:在过去的十年中,电化学二氧化碳的减少已经成为研究的一个蓬勃发展的领域,其目标是将电力转化为可再生的化学物质和燃料。催化剂开发的最新进展显着提高了选择性和活性。然而,不仅由于电催化剂的不明确和复杂的形态和介观结构,而且由于电极表面和本体溶液之间存在巨大的浓度梯度,导致依赖于电势的结构-活性关系变得复杂。在这项工作中,通过使用原位表面增强红外吸收光谱(SEIRAS)和计算模型,我们明确表明,在相对较低的电流密度(<10 mA /)下,常用的强磷酸盐缓冲液无法在铜电极上进行CO2电解还原过程中维持界面pH值。厘米(2)。与0.2 M磷酸盐缓冲液中的本体溶液相比,即使在光滑的多晶铜电极上,与碳氢化合物形成有关的电势(-1 V对RHE)相比,电极表面附近的pH值也比大体积溶液高出5个pH单位。由于同时产生的氢气急剧增加,急剧增加缓冲容量并不能解决该问题,因为这会导致缓冲液在较窄的电位范围内击穿。这些无法预料的结果表明,大多数(即使不是全部)关于电化学CO2还原为CO2饱和水溶液中的碳氢化合物的研究都是在铜电极的传质限制下进行的。我们强调指出,具有高局部电流密度(例如纳米结构)的电极上的大浓度梯度对选择性,活性和动力学分析具有重要意义,并且任何试图建立结构-活性关系的尝试都必须排除质量传输效应。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第40期|15891-15900|共10页
  • 作者单位

    Delft Univ Technol MECS Dept Chem Engn NL-2629 HZ Delft Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号