首页> 外文期刊>Journal of the American Chemical Society >Stabilization of O-O Bonds by d~0 Cations in Li_(4-x)Ni_(1-x)WO_6 (0 ≤ x ≤ 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis
【24h】

Stabilization of O-O Bonds by d~0 Cations in Li_(4-x)Ni_(1-x)WO_6 (0 ≤ x ≤ 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis

机译:Li_(4-x)Ni_(1-x)WO_6(0≤x≤0.25)岩盐氧化物中d〜0阳离子稳定O-O键的原因是大电压滞后

获取原文
获取原文并翻译 | 示例
           

摘要

Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d(0) cations. However, Li-rich rock salt oxides with high valent d(0) cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1-xWO6 (0 = x = 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d(0) W6+ cation affords extensive (2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O-O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d(0) cation associates localized anion-anion bonding with the anion redox capacity.
机译:具有岩盐结构的多元氧化锂作为可再充电锂离子电池中的阴极材料在技术上具有重要意义。当前最先进的阴极(例如LiNi1 / 3Mn1 / 3Co1 / 3O2)依靠地球上丰富的过渡金属阳离子的氧化还原循环来提供充电容量。近来,已经确立了在富锂盐岩氧化物中使用氧化物阴离子作为氧化还原中心的可能性,作为设计具有更高容量(> 200 mAh / g)的阴极材料的新范例。为了增加锂含量并从氧衍生态获取电子,这些材料通常需要处于高氧化态的过渡金属,使用d(0)阳离子可以轻松实现。但是,具有高价d(0)阳离子(如Nb5 +和Mo6 +)的富锂盐酸盐氧化物在充放电之间表现出惊人的高电压磁滞现象,其起源尚待研究。在这项工作中,我们研究了一系列富含锂的化合物,Li4 + xNi1-xWO6(0 <= x <= 0.25),它们采用了两种新的且独特的盐离子结构阳离子序变体。 Li4.15Ni0.85WO6(x = 0.15)相具有200 mAh / g的大可逆容量,而无需使用Ni3 + / Ni4 +氧化还原对,这意味着三分之二以上的容量归因于阴离子氧化还原,可循环性。 5d(0)W6 +阳离子的存在提供了与阴离子氧化还原相关的广泛(> 2 V)电压滞后。我们提供了形成强烈稳定的局部O-O单键的实验证据,这些单键解释了减少放电时减少材料所需的能量损失。高价d(0)阳离子将局部阴离子-阴离子键与阴离子氧化还原容量相关联。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第18期|7333-7346|共14页
  • 作者单位

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England|Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England|Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England|Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England|CIC Energigune, Alava Technol Pk,Calle Albert Einstein 48, Minano 01510, Spain;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Diamond Light Source, Diamond House, Didcot OX11 0DE, Oxon, England;

    Diamond Light Source, Diamond House, Didcot OX11 0DE, Oxon, England;

    Univ Liverpool, Dept Phys, Crown St, Liverpool L69 7ZD, Merseyside, England|Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England|Univ Liverpool, Stephenson Inst Renewable Energy, Chadwick Bldg,Peach St, Liverpool L69 7ZF, Merseyside, England;

    Univ Liverpool, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号