...
首页> 外文期刊>Journal of the American Chemical Society >Enhanced Electrophilicity of Heterobimetallic Bi-Rh Paddlewheel Carbene Complexes: A Combined Experimental, Spectroscopic, and Computational Study
【24h】

Enhanced Electrophilicity of Heterobimetallic Bi-Rh Paddlewheel Carbene Complexes: A Combined Experimental, Spectroscopic, and Computational Study

机译:增强的异双金属Bi-Rh桨轮碳烯配合物的亲电子性:组合的实验,光谱和计算研究。

获取原文
获取原文并翻译 | 示例

摘要

Dirhodium paddlewheel complexes are indispensable tools in modern organometallic catalysis for the controlled decomposition of diazo-compounds. Tuning the reactivity of the thus-formed transient carbenes remains an active and dynamic field of research. Herein, we present our findings that the distal metal center plays an as yet underappreciated role in modulating this reactivity. Replacement of one rhodium atom in the bimetallic core for bismuth results in the formation of a significantly more electrophilic carbene complex. Bismuth-rhodium catalysts thereby facilitate previously unknown modes of reactivity for alpha-diazoester compounds, including the cyclopropanation of alkenes as electron deficient as trichloroethylene. While dirhodium paddlewheel complexes remain the catalysts of choice for many carbene-mediated transformations, their bismuth-rhodium analogues exhibit complementary reactivity and show great potential for small molecule and solvent activation chemistry. DFT calculations highlight the importance of metal-metal bonding interactions in controlling carbene electrophilicity. The paucity of these interactions between the 4d orbitals of rhodium and the 6p orbitals of bismuth results in weaker pi-back-bonding interactions for bismuth-rhodium carbene complexes compared to dirhodium carbene complexes. This leads to weakening of the rhodium-carbene bond and to a more carbene-centered LUMO, accounting for the observed enhancement in bismuth-rhodium carbene electrophilicity. These findings are supported by a detailed spectroscopic study of the "donor-donor" carbene complexes Rh-2(esp)(2)C(p-MeOPh)(2) (19) and BiRh(esp)(2)C(p-MeOPh)(2) (20), employing a combination of UV-vis and resonance Raman spectroscopy. The results reveal that carbene chemoselectivity in MRh(L)(4) catalysis can be modulated to a previously unrecognized extent by the distal metalloligand.
机译:在现代有机金属催化中,重氮桨轮络合物对于重氮化合物的可控分解是必不可少的工具。调节由此形成的瞬态卡宾的反应性仍然是活跃而动态的研究领域。在本文中,我们介绍了我们的发现,即远端金属中心在调节这种反应性中起着尚未被充分认识的作用。铋的双金属核中一个铑原子的置换导致形成明显更亲电子的卡宾络合物。铋-铑催化剂由此促进了对于α-重氮酸酯化合物的先前未知的反应方式,包括作为电子缺陷的烯烃的环丙烷化,如三氯乙烯。尽管铑叶轮络合物仍然是许多卡宾介导的转化的选择催化剂,但它们的铋铑类似物表现出互补的反应性,并在小分子和溶剂活化化学中显示出巨大的潜力。 DFT计算强调了金属-金属键相互作用在控制卡宾亲电性中的重要性。铑的4d轨道和铋的6p轨道之间的这些相互作用很少,导致铋-铑卡宾配合物的π背键相互作用较之卡宾配合物弱。这导致铑-卡宾键的弱化和更以卡宾为中心的LUMO,这说明了铋-铑卡宾的亲电性增强。这些发现得到“供体-供体”卡宾配合物Rh-2(esp)(2)C(p-MeOPh)(2)(19)和BiRh(esp)(2)C的详细光谱学研究的支持。 (p-MeOPh)(2)(20),采用紫外可见光谱和共振拉曼光谱技术。结果表明,远端金属配体可以将MRh(L)(4)催化中的卡宾化学选择性调节到以前无法识别的程度。

著录项

  • 来源
    《Journal of the American Chemical Society 》 |2018年第40期| 13042-13055| 共14页
  • 作者单位

    Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany;

    Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany;

    Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany;

    Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号