首页> 外文期刊>Journal of the American Chemical Society >MOLECULAR MODELING STUDIES ON OXIDATION OF HEXOPYRANOSES BY GALACTOSE OXIDASE - AN ACTIVE SITE TOPOLOGY APPARENTLY DESIGNED TO CATALYZE RADICAL REACTIONS, EITHER CONCERTED OR STEPWISE
【24h】

MOLECULAR MODELING STUDIES ON OXIDATION OF HEXOPYRANOSES BY GALACTOSE OXIDASE - AN ACTIVE SITE TOPOLOGY APPARENTLY DESIGNED TO CATALYZE RADICAL REACTIONS, EITHER CONCERTED OR STEPWISE

机译:半乳糖氧化酶氧化六聚吡喃糖的分子模拟研究-一种活动的现场拓扑结构,设计用于催化无论是连续还是逐步的自由基反应

获取原文
获取原文并翻译 | 示例
       

摘要

Galactose oxidase is a mononuclear copper enzyme which oxidizes primary alcohols to aldehydes using molecular oxygen. A unique type of cross-link between tyrosine 272, an active site copper ligand, and cysteine 228 provides a modified tyrosine radical site which is believed to act as a one-electron redox center. Galactose oxidase is highly selective in its processing of hexopyranose substrates. Turnover of D-galactose is stereospecific for cleavage of the pro-S hydrogen. D-Galactose is an excellent substrate but its C-4 epimer D-glucose is not a substrate and will not even bind at 1 M concentration. Any proposed mechanism for galactose oxidase should be able to account for these stringent hexopyranose substrate specificities. In this paper we report molecular modeling studies of active site binding of postulated radical carbon-hydrogen bond cleavage transition states of D-galactose and D-glucose. Differences in specific enzyme-substrate interactions provide convincing explanations of the pro-S and galactose specificities. In addition, a previously unconsidered concerted radical mechanism appears to be just as plausible as the more standard stepwise radical mechanism via a ketyl radical anion intermediate. Regardless of whether a stepwise or concerted mechanism is operating, the active site appears to be well designed to bind radical transition states and perform radical enzyme catalysis. The detailed models developed here for ground state and transition state enzyme-substrate interactions provide insight to guide mechanistic studies using both radical-probing substrates and site-directed mutagenesis.
机译:半乳糖氧化酶是一种单核铜酶,可使用分子氧将伯醇氧化为醛。酪氨酸272,活性位点铜配体和半胱氨酸228之间的独特类型的交联提供了修饰的酪氨酸自由基位点,据认为该位点充当单电子氧化还原中心。半乳糖氧化酶在处理六吡喃糖底物时具有很高的选择性。 D-半乳糖的周转对于前S氢的切割是立体定向的。 D-半乳糖是极好的底物,但其C-4差向异构体D-葡萄糖不是底物,甚至在1 M浓度下也不会结合。任何提议的半乳糖氧化酶机制都应能够解释这些严格的六吡喃糖底物特异性。在本文中,我们报告了分子模型研究的活性位点结合的假定的D-半乳糖和D-葡萄糖的自由基碳氢键裂解过渡态。特定酶与底物相互作用的差异为pro-S和半乳糖特异性提供了令人信服的解释。另外,先前未考虑的协同自由基机理似乎与经由酮基自由基阴离子中间体的更标准的逐步自由基机理一样合理。无论是逐步运行还是协同运行,活性位点似乎都经过精心设计,可以结合自由基过渡态并执行自由基酶催化作用。此处开发的用于基态和过渡态酶-底物相互作用的详细模型为利用自由基探测底物和定点诱变提供了指导机制研究的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号