首页> 外文期刊>Journal of the American Chemical Society >Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids
【24h】

Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids

机译:晶体工程方法与有机酸形成胺盐酸盐的共晶体。盐酸氟西汀与苯甲酸,琥珀酸和富马酸的分子复合物

获取原文
获取原文并翻译 | 示例
       

摘要

A crystal engineering strategy for designing cocrystals of pharmaceuticals is presented. The strategy increases the probability of discovering useful cocrystals and decreases the number of experiments that are needed by selecting API:guest combinations that have the greatest potential of forming energetically and structurally robust interactions. Our approach involves multicomponent cocrystallization of hydrochloride salts, wherein strong hydrogen bond donors are introduced to interact with chloride ions that are underutilized as hydrogen bond acceptors. The strategy is particularly effective in producing cocrystals of amine hydrochlorides with neutral organic acid guests. As an example of the approach, we report the discovery of three cocrystals containing fluoxetine hydrochloride (1), which is the active ingredient in the popular antidepressant Prozac. A 1:1 cocrystal was prepared with 1 and benzoic acid (2), while succinic acid and fumaric acid were each cocrystallized with 1 to provide 2:1 cocrystals of fluoxetine hydrochloride:succinic acid (3) and fluoxetine hydrochloride:fumaric acid (4). The presence of a guest molecule along with fluoxetine hydrochloride in the same crystal structure results in a solid phase with altered physical properties when compared to the known crystalline form of fluoxetine hydrochloride. On the basis of intrinsic dissolution rate experiments, cocrystals 2 and 4 dissolve more slowly than 1, and 3 dissolves more quickly than 1. Powder dissolution experiments demonstrated that the solid present at equilibrium corresponds to the cocrystal for 2 and 4, while 3 completely converted to 1 upon prolonged slurry in water.
机译:提出了设计药物共晶的晶体工程策略。该策略增加了发现有用的共晶体的可能性,并减少了通过选择具有最大的能量和结构上稳固的相互作用潜力的API:来宾组合所需的实验次数。我们的方法涉及盐酸盐的多组分共结晶,其中引入强氢键供体与未充分用作氢键受体的氯离子相互作用。该策略在生产具有中性有机酸客体的胺盐酸盐的共晶体时特别有效。作为该方法的一个例子,我们报告发现了三种含有氟西汀盐酸盐(1)的共晶体,这是流行的抗抑郁药百忧解中的活性成分。用1和苯甲酸(2)制备1:1的共晶体,而琥珀酸和富马酸分别用1进行共结晶,以提供盐酸氟西汀:琥珀酸(3)和盐酸氟西汀:富马酸(4)的2:1共晶体。 )。与已知的盐酸氟西汀的晶体形式相比,客体分子与盐酸氟西汀的存在在相同的晶体结构中导致固相具有改变的物理性质。根据本征溶解速率实验,共结晶2和4的溶解速度比1慢,而3溶解的速度比1快。粉末溶解实验表明,处于平衡状态的固体对应于2和4的共晶体,而3完全转化。延长在水中的浆液至1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号