首页> 外文期刊>Journal of the American Chemical Society >Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations
【24h】

Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations

机译:过渡金属上乙醇分解的模型:比例缩放和布朗斯台德-埃文斯-波兰尼关系的组合应用

获取原文
获取原文并翻译 | 示例
       

摘要

Applying density functional theory (DFT) calculations to the rational design of catalysts for complex reaction networks has been an ongoing challenge, primarily because of the high computational cost of these calculations. Certain correlations can be used to reduce the number and complexity of DFT calculations necessary to describe trends in activity and selectivity across metal and alloy surfaces, thus extending the reach of DFT to more complex systems. In this work, the well-known family of Bronsted-Evans-Polanyi (BEP) correlations, connecting minima with maxima in the potential energy surface of elementary steps, in tandem with a scaling relation, connecting binding energies of complex adsorbates with those of simpler ones (e.g., C, O), is used to develop a potential-energy surface for ethanol decomposition on 10 transition metal surfaces. Using a simple kinetic model, the selectivity and activity on a subset of these surfaces are calculated. Experiments on supported catalysts verify that this simple model is reasonably accurate in describing reactivity trends across metals, suggesting that the combination of BEP and scaling relations may substantially reduce the cost of DFT calculations required for identifying reactivity descriptors of more complex reactions.
机译:将密度泛函理论(DFT)计算应用于复杂反应网络的催化剂的合理设计一直是一个持续的挑战,这主要是因为这些计算的计算成本很高。可以使用某些相关性来减少描述金属和合金表面活性和选择性趋势所必需的DFT计算的数量和复杂性,从而将DFT的范围扩展到更复杂的系统。在这项工作中,著名的布朗斯台德-埃文斯-波兰尼(BEP)相关族,将基本步骤的势能面中的最小值与最大值联系起来,并按比例关系将复杂吸附物的结合能与较简单的结合能联系起来那些(例如,C,O)被用于开发势能表面,用于乙醇在10个过渡金属表面上分解。使用简单的动力学模型,可以计算这些表面的一部分上的选择性和活性。在负载型催化剂上进行的实验证明,该简单模型在描述各种金属的反应性趋势方面相当准确,这表明BEP和比例关系的组合可显着降低识别更复杂反应的反应性描述子所需的DFT计算成本。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2009年第16期|5809-5815|共7页
  • 作者单位

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 Center for Atomic-Scale Materials Design, Department of Physics-Nano-DTU, Technical University of Denmark, DK-2800, Lyngby, Denmark;

    Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:16:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号